
ABSTRACT

AN ADAPTIVE APPROACH TO OPTIMIZING QOS THROUGHPUTS IN
SOFTWARE DEFINED NETWORKS

J. M. Boley, MS
Department of Computer Science
Northern Illinois University, 2017

Nicholas T. Karonis, Director

Maximizing bandwidth availability to critical science data flows is a key strategy in

guaranteeing that current infrastructure can keep pace with the increasing demands of dis-

tributed science workflows across multiple facilities. Much of the research in this area has

gone into developing parallel file transfer protocols such as GridFTP and leveraging circuit-

based reservation systems like ESnets OSCARS. Software Defined Networks (SDN) is a

recent development that presents a programmable approach to networking that moves rout-

ing logic out of the network fabric and abstracts the physical network behind a unified API.

While SDN has gained significant traction in the data center, its potential is just beginning

to garner attention in the scientific computing space and much investigation has yet to be

done. In this study we examine an adaptive, priority-driven algorithm that leverages SDN

capabilities to monitor flows, enforce per-application bandwidth guarantees and reallocate

unutilized bandwidth between virtual circuits in real time.

Trials were conducted on a simplified, six-switch topology with a single bottleneck link to

demonstrate the correct behavior of the algorithm and compare it to competing traffic man-

agement techniques. We show that by intelligently adjusting throughput limits–effectively



loaning out bandwidth from flows that are under-utilizing reserved bandwidth to flows that

can make better use of the extra bandwidth–more optimal throughputs can be achieved for

priority applications at a minimal cost to total bandwidth usage compared to such classic

policing schemes as Differentiated Services queues.
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CHAPTER 1

INTRODUCTION

Driven by the increasing sophistication and fidelity of simulation and science experiments,

processing and storage of the massive volumes of data acquired and analyzed in science

workflows has become highly distributed, typically spanning multiple facilities. Moreover,

this deluge of science data continues to grow. As noted in [1], the sheer volume of data

produced in scientific computing results in the need to support transfers of terabytes (TB)

and even petabytes (PB) of data between facilities across the Wide Area Network (WAN).

The obstacles to ensuring efficient and timely delivery of these massive volumes of data are

many, but perhaps the single greatest roadblock is the fact that the data transfer capabilities

of the intervening networks, specifically at the routing hubs, is not growing in proportion to

the volumes of the data being routed [2].

Maximizing the overall efficiency of multiple end-to-end data transfers across the Wide

Area Network poses significant challenges when faced with uncertain network conditions

towards the endpoints. A considerable amount of work has been done in the scientific com-

puting space, including the GridFTP protocol [1] and Globus’ implementation of a GridFTP

parallel file transfer system [3]. However, despite significant progress the nature of the in-

frastructure makes it extremely difficult to consistently maximize performance of individual

data transfers over long-haul connections. Data can be buffered at the Data Transfer Nodes

(DTN) and large files split and sent into the network as parallel streams, for instance, and

paths and bandwidth slices can be provisioned with ESnet’s On-Demand Secure Circuits and

Advance Reservation System (OSCARS) [4], but once the packets leave the DTN they must

travel through campus and regional networks before even reaching an OSCARS circuit in the
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WAN. Even before packets leave the DTN, changing loads on the subnets behind the DTN

and within the data storage facility may hamper availability of the data on the DTN. While

it may be possible to optimize load balancing on local networks there is still no guarantee of

optimal performance. Minimization of wasted wide area network resources therefore falls to

the provisioning and management systems.

Distributed and parallel storage systems introduce a number of variables that impact their

ability to service large data requests, including the number of simultaneous or overlapping

requests (possibly background, or noise), the diameter of the smallest link in a Storage Area

Network (SAN), queuing delays at the switches and the sizes of the files being transferred [5].

The work done on GridFTP’s pipelining feature [6] underscores the detrimental impact on

transfer rates introduced by lots of little files. These issues become even more glaring in the

presence of 100 Gb-capable networks [5]. The observed throughputs over time of large data

transfers never consistently utilize the total reserved link capacity. It is most often the case

that flows do not use all of the available bandwidth most of the time. As a result significant

amounts of bandwidth go wasted.

The majority of effort invested in solving these and similar problems has gone into working

around the problems or dealing with them in software that runs on the endpoints; far less has

been applied directly to the networking infrastructure and traffic management frameworks

in this context. The recent advent of Software Defined Networking (SDN) [7] as a viable,

accessible and industry-endorsed alternative to classic networking has the potential to induce

a major shift in the scientific computing landscape. For the first time, network designers

and developers have been given the tools to build multi-tiered network applications that

begin in the user application space and drill down to the network fabric, where each layer

operates on an abstraction of the one below it. Before SDN, engineers had been forced

to design around the lack of flexibility in classic network infrastructure, and were further

forced to patch around the inevitable collection of heterogeneous protocols brought by a
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heterogeneous network fabric comprising a patchwork quilt of closed, proprietary network

devices [8]. In contrast, SDN has the potential to allow scientific computing frameworks to

tap into the potential of the infrastructure on which they are built; instead of being passive

players in how data is prioritized and transferred, applications could have a direct line to

the network application framework.

The question of how Software Defined Networks can be leveraged to fulfill this promise is

still very much open; the technology and specifications remain under ferocious development.

The predominant SDN protocol to emerge in recent years is the OpenFlow protocol [9], but

like everything else in the SDN space it too has undergone significant evolution. Looking back

to classic traffic engineering approaches such as classic Differentiated Services (or DiffServ)

Quality of Service (QoS) [10] offers us hints as to how network resources might be effectively

managed, but these approaches are limited by their sheer complexity, the decentralized and

heterogeneous nature of the technology on which they are built and the monumental task

of coordinating the implementation of network-wide resource allocation changes in anything

approaching real-time [8]. Software Defined Networks have the proven potential to make the

unmanageable manageable by offering an abstract, unified view of the physical network to

management applications. The challenge remains for the SDN and OpenFlow communities

to find new and innovative ways to tackle traffic-engineering problems, and develop a new

toolset that leverages the capabilities of a programmable network infrastructure. In answer

to this challenge, our research investigates how Software Defined Networks can be leveraged

to enable real-time optimization of network resource allocation. We focus on bandwidth al-

location amongst multiple high-priority flows and how the problem of (per-flow) bandwidth

under-utilization may be addressed by the OpenFlow protocol’s QoS-like mechanisms. Our

work is specifically targeted towards reservation-based, access-controlled network applica-

tions such as OSCARS [4], though the results of our work will certainly have much broader

implications. Four key considerations drive our efforts:
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1. Exploration of Quality of Service (QoS) in the SDN space, and its application to the

scientific computing domain. Our research falls amongst other first steps efforts in the

scientific community aimed towards investigating traffic engineering innovations made

possible by SDN architectures.

2. Support for the growing impetus for expansion of SDN’s application space, which

until recently has largely coalesced around the data center. Our initial survey of

available SDN technologies reveals a plethora of specialized SDN network components

that (loosely) fall under the general SDN umbrella but are tightly integrated into

existing, proprietary solutions that could best be described as hybrids. While research

and development of SDN is thriving, its common application remains largely confined

to a very narrow niche.

3. The increasing need for real-time analysis in several science domains that correspond-

ingly increase the demands for both bandwidth and latency guarantees from traffic

management frameworks.

4. The increasingly orchestrated nature of data movement between multiple facilities

across the Wide Area Network in our science workflows, which also require greater

flexibility and stricter QoS guarantees on a per-workflow basis.

We develop and evaluate a traffic control algorithm implemented on the open source

Floodlight SDN controller platform. This study focuses specifically on demonstrating the

benefits of using an OpenFlow traffic engineering solution in comparison with other notable

approaches, both traditional and rooted in the SDN movement.



CHAPTER 2

BACKGROUND

2.1 Software-Defined Networking

Software-defined networking is an approach to network application design that separates

the control logic from the implementation of the data plane, or the physical devices and

operating systems running on those devices. The SDN paradigm separates network architec-

ture into three layers: a control layer, network virtualization layer, and a network operating

system (NOS) layer [9]. At the highest level is the control program, which operates on a

high-level abstraction of the global network and is responsible for driving network policy.

Below that is the virtualization layer, where the physical characteristics of the global net-

work are reduced to a simplified representation against which the control program can issue

commands. At the lowest level, the Network OS controls the physical devices that comprise

the network fabric. In broad terms, the virtualization layer translates the control program’s

high-level directives into low-level dialogue understood by the NOS.

The foundational principles and concepts underlying the SDN concept are not new, and

solutions incorporating the core principles have existed in one form or another since the

1990’s. Some of the earliest examples can be found in work done with ATM switches [11].

Others include Devolved Control of ATM Networks (DCAN), Common Open Policy Service

(COPS), Simple Network Management Protocol (SNMP), and Forwarding and Control Ele-

ment Separation (ForCES) [8]; the drive for SDN-like networks has continued unabated and

numerous examples and alternative approaches have appeared over the years [7]. The most
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Figure 2.1: The canonical software-defined network archetype

recent SDN movement began with the inception of the OpenFlow protocol [12], which was

introduced in the 2008 newsletter OpenFlow: enabling innovation in campus networks [9].

The OpenFlow protocol bridges the controller software and the network operating system

devices with a completely open specification under a GPL-type license. Because of its flexi-

bility and transparency, the OpenFlow protocol has become widely recognized as a de facto

standard and driving force in the networking community’s adoption of SDN technology [4],

eventually gaining traction with major companies such as Cisco and Juniper, and creating

a new market for start-ups like Corsa Technologies and BigSwitch Networks.

Perhaps the most recognizable incarnation of the SDN paradigm, driven by the notion

of a homogenized network fabric where all devices speak to a controller through a unified

Southbound API, is illustrated in Figure 2.1. In nearly all non-proprietary SDN deploy-

ments known to the research team, the OpenFlow protocol provides the common language

through which the controller communicates with network devices and vice versa. Removing

the routing logic from the switch has the profound effect of making the network fabric pro-

grammable, in real time. More importantly, traffic management strategies and policies are

no longer hampered by a distributed networking intelligence that may or may not be in full

possession of the information needed to make smart traffic management decisions.



7

Figure 2.2: The Differentiated Services Queuing approach

2.2 Quality of Service (QoS) and OpenFlow

Classic traffic engineering approaches include Differentiated Services (or DiffServ), orig-

inally proposed in [13]. As detailed in [10], traffic flows are assigned a priority (each packet

carries a DSCP code that maps to a Class of Service) and sent to a queuing mechanism

on the edge router at which it enters the network. The DiffServ queuing strategy typically

employs a token-bucket algorithm in which overflow packets are dropped and a weighted

round-robin scheduler that controls the subsequent transmission of packets. Both are im-

plemented on the switch and so the queuing mechanism enjoys near-instantaneous reaction

times to changes in flow rates crossing the switch.

The ratio of traffic belonging to different classes of service is specified by a system of

weights, as illustrated by Figure 2.2. A reduction in the total bandwidth utilized by flows

belonging to a class of service leads to redistribution of the unused bandwidth following

the indicated weighted ratio scheme. The weights in the figure are expressed as percentages.

This has the serendipitous effect of creating a minimum throughput guarantee; the aggregate

traffic sent to any queue will get at least the proportion of bandwidth that the round-robin
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ratio guarantees, and flows in any queue are allowed to expand into any bandwidth not

being used by the aggregate of any other flows directed to any other queue. In practice,

most hardware switches do not implement more than four queues per port, effectively pre-

cluding fine-grained, per-flow rate policies as switches in real networks can have hundreds or

thousands of flows exiting their ports at any given time.

An unfortunate limitation of DiffServ implementations is their relative inflexibility and

the difficulty associated with managing a network of DiffServ switches. The Simple Network

Management Protocol (SNMP) [14] was adopted to address these and similar issues [8].

In the SDN space, the OpenFlow standard does not include any protocol for updating

queue weights, and so they too must be adjusted on a switch-by-switch basis, meaning

that individually touching all involved ingress switches is an absolute necessity when traffic

rates need to be adjusted. Additionally, most switches (whether virtual or hardware) only

allow a maximum of four queues per port. In the presence of a busy network, which could be

host to hundreds or thousands of flows, this severely reduces the viability of using a strictly

DiffServ approach to fine-grained management of flow behavior; the DiffServ model was never

designed to allow traffic management on a per-flow basis, but rather takes the position that

traffic engineering can be accomplished most effectively operating on class-based aggregates

of flows.

From the outset, the OpenFlow specification [12] has included support for legacy QoS

queues, and most production switches, both virtual and physical, still implement them. Any

OpenFlow enabled controller can issue an instruction that sends matched incoming packets

to a specific queue on the relevant output port. However, setting or changing queue ratios is

not supported by the OpenFlow protocol; from the controller’s perspective ratios are fixed,

requiring jury-rigged fixes outside of the controller and OpenFlow specification to allow

controller-driven adjustments. This was the only traffic management tool available to the

OpenFlow community until the OpenFlow 1.3 [15] specification was released.
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Figure 2.3: OpenFlow meter specification

The v1.3 draft of the OpenFlow specification [15] introduced a new traffic management

tool, dubbed a meter by the protocol designers. Despite their somewhat misleading label,

OpenFlow meters do more than track byte counts; they police flows by enforcing a rate cap,

or absolute upper rate limit. A schematic representation of the protocol’s specification of

the meter is shown in Figure 2.3. Multiple drop bands provide several rate caps, and the cap

closest to the collective rates of the flows sent through is selected as the active rate limit. All

meter implementations encountered by the research team have done away with the notion

of multiple bands, effectively enforcing only a single rate cape irrespective of flow rates.

Thanks to the flexibility of the OpenFlow protocol, both individual and aggregates of

flows can be directed to any meter. It is therefore possible to carve out channels of link

bandwidth for any number of flows in OSCARS-like fashion; if flows attempt to grow outside

of their so-called channel the meter mechanism will selectively drop packets until flow rates

more closely match set rate limits. Most notably, unlike classic DiffServ queues and other

static schemes, meter rates can be programmed by the controller in real-time, making them

ideal for much more dynamic traffic management policies.
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An approach to traffic engineering that arises naturally from the OpenFlow 1.3 specifica-

tion is the use of so-called meters (with drop packet bands) that impose an upper limit on a

flow’s rate [15]. This approach is appealing because the OpenFlow specification specifically

prescribes the use of meters as per-flow traffic control mechanisms, which is a natural fit

for any fine-grained traffic management strategy. However, as this study will show, using a

purely static approach (i.e., one not driven by some sort of application logic) to metering

flows imposes penalties to bandwidth utilization that can be as harmful to overall bandwidth

utilization as simply doing nothing.

2.3 Related Work

The drive to find answers to the bandwidth-tuning problem is not new. Other works,

many sponsored by the US Department of Energy, have sought to develop traffic manage-

ment frameworks that accomplish one kind of traffic optimization or another. Examples

include work done for the UltraScience Net project [16] described in [17], which relies on

intelligent bandwidth scheduling and signaling daemons that coordinate activities of net-

work components, and the GARA framework [18][19] which also targets adaptation of the

network in real-time. These frameworks differ from the present work in that they are built

on classical (i.e., non-SDN) network approaches and infrastructure and, in the case of the

UltraScience Net project, a different approach to making bandwidth guarantees.

Utilizing a traditional DiffServ approach for SDN networks was explored in [20] and im-

plemented as a plugin to the Floodlight controller [21]. Most OpenFlow-enabled switches–in

fact, all of the hardware and software switches known to the research team–offer standard

DiffServ queues. The work detailed in the article implemented a QoS application at the

control layer, and while it offered no innovations that demonstrated any clear advantage to
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SDN-based traffic engineering over legacy networks, it more than adequately demonstrated

how 1) QoS concepts could be integrated into the SDN space; and 2) the controller’s north-

bound API could be extended to allow management applications to coordinate QoS services.

The OpenFlow 1.3 (and above) specifications recommend combining DiffServ queues

and meters in a sort of hybrid approach for fine-grained rate policy implementation. This

approach is briefly touched on in [22], where the authors advance the idea of leveraging SDN

and OpenFlow capabilities in the virtualization of satellite network provisioning. This study

also examines the performance of a simple strategy combining static metering and queueing.

The DANCES framework [23] also identifies the OpenFlow 1.3 meter as an ideal traffic

control mechanism. Like the UltraScience Net project, DANCES also relies on the notion of

bandwidth scheduling. OpenFlow meters are used to enforce static classes of flows, where

flows are policed in aggregate as in classic DiffServ queuing. The focus of research efforts

with the DANCES framework is to maximize the aggregate throughputs of each class of

traffic, not the individual bandwidth needs of the applications. In a similar vein, the Google

B4 [24] and Microsoft SWAN [25] projects focus on maximizing total throughputs across the

network but ignore the needs of individual, mission-critical applications.



CHAPTER 3

DESIGN AND IMPLEMENTATION

3.1 Problem Definition

Science workflows that require coordinated activities at multiple endpoints (sites) are

the target application of this work. These workflows require significant transmission of

science data between sites and, significantly, the storage facilities behind the Data Transfer

Nodes (DTN). Real-time simulation workflows may also require streaming between HPC or

supercomputer clusters. There is no way to predict how many such workflows may be moving

data in parallel, so it must be assumed that at any given time it is possible that more traffic is

being sent than the networks can handle given current practices. Whether this is strictly true

all the time at present is less important than the fact that, as the demands on infrastructure

increase as the generation or collection of science data becomes ever more prodigious, the

total infrastructure supporting long-haul connections will be in an increasingly poor position

to shoulder the burden.

It is further assumed that these science workflows require solid Quality of Service (QoS)

guarantees, particularly in regards to bandwidth availability, and will accordingly suffer if

demands are not met. Real-time analyses that consume data collected remotely are obvious

candidates for QoS guarantees. However, even science applications that simply want to move

data from Site A to Site B may entail the movement of data of sufficient volume that QoS

guarantees are desirable. Parallel workflows requiring different degrees of guarantees is in-

evitable. This provides an opportunity to examine more nuanced schemes of QoS guarantees
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than a bipolar classification system that treats all traffic as completely critical or completely

trivial. Several QoS classes are proposed, ranging from QoS1 through QoS4 in decreasing

order of precedence. Application traffic that is not critical to a science workflow, such as

email, streaming video and video conference feeds, is considered secondary to the mission

of the science network. This kind of traffic—along with general Internet traffic—is consid-

ered background but classified as Best Effort in recognition of the fact that some minimum

guarantee is still necessary.

Science application (or QoS) flows are considered on a per-application basis, while Best

Effort traffic is managed in aggregate. However, for the sake of simplicity each science

workflow in these experiments is assumed to have a single flow and each flow is given a

separate QoS guarantee. A single flow also stands in for Best Effort traffic. In a real-world

deployment, QoS guarantees would be made on the basis of the aggregates of the flows

belonging to individual applications. The OpenFlow protocol renders the implementation

differences fairly trivial.

The OSCARS model is followed in this work, where each application submits a request

for a specific slice of bandwidth and the framework creates a dedicated virtual circuit and

enforces the bandwidth agreement. These agreements are referred to as reservations, and

generally follow the notion of a Service Level Agreement (SLA). In this sense, the framework

evaluated in these experiments makes per-application SLAs.

F = (s, sp, d, dp, proto, AT, ST,D, class,minBW ) (3.1)

Equation 3.1 formally defines a flow, where s is the source IP, sp is the source port, d

is the destination IP, dp is the destination port and proto is the network protocol, which

uniquely identifies the flow. AT is the expected arrival time of a flow, ST is the actual start
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time, and D is the duration or expected lifetime of the reservation. Finally, class is the QoS

class requested for the flow and minBW is the minimum bandwidth required by the flow.

User applications may not have a clear notion of how much bandwidth is required for

a data transfer, which leads to two possible scenarios: 1) The application overestimates its

requirements, leading to bandwidth that would go unutilized in a static circuit allocation

system like OSCARS; or 2) The application underestimates its requirements, leading to

strangulation of the data transfer. One is assumed as likely as the other, and the AQoS

framework takes this into account. The specific goals of the AQoS algorithm are to lend

bandwidth to needy applications while not allowing other applications to tie up unused

bandwidth in gratuitous reservations. At the same time, the AQoS algorithm must also

honor minimum bandwidth guarantees to applications that can utilize them.

3.2 Algorithm Overview

In simple terms, the AQoS algorithm tackles the bandwidth-sharing problem by leverag-

ing the following techniques:

1. Redistribution of unused bandwidth amongst priority flows. Similar to tradi-

tional QoS schemes, we treat flows as having given priorities on a scale from highest

(QoS1) to lowest (Best Effort, or background). Priority flows that are consistently

underperforming have the unused portion of their bandwidth reservations shared out

amongst those other priority flows that can make use of it.

2. Priority-driven bandwidth assignment. Unlike traditional traffic shaping with

DiffServ Queues, which proportionally allow all flows (regardless of priority) to expand

into unused bandwidth based upon a fixed ratio, we selectively allow flows to expand

into available bandwidth. The highest priority flows are allowed to expand into unused
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Figure 3.1: Comparison of hypothetical flow rates by traffic shaping method at four intervals

bandwidth first, after which any remaining unused bandwidth is passed down to lower

priority flows. Any leftover bandwidth is then handed over to background traffic after

flows at all priority levels have been serviced.

QoS flows are treated as first-class citizens. If a QoS flow is able to expand it is generally

allowed to do so, unless any link on its path is so heavily loaded that there is no bandwidth

left to give it. This comes at the expense of the Best Effort flows, which in our implemen-

tation are used as a catchall category for unimportant background traffic; Best Effort flows

have no priority and are considered secondary to QoS flows. In cases of extreme overload

where available Best Effort bandwidth is exhausted, the Adaptive Quality of Service (AQoS)

algorithm is designed to take bandwidth from lower-priority flows that are over their reser-

vations and give it back to an under-performing higher-priority QoS flow if it is growing back

into its reserved bandwidth.
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To get a sense of how the algorithm should work, consider a scenario with three flows,

two QoS and one Best Effort, on a simple two-node topology. Flows QoS1 and QoS2 have

initially reserved 1 and 2 Gbps on a 10 Gbps link, respectively, while BE traffic is free to

utilize the remaining 7 Gbps, of which it is able to make use of 6 Gbps for a total utilization

of 9 Gbps (Figure 3.1.a). Alternately, assume 1) a static metering scheme; 2) a traditional

DiffServ Queues scheme utilizing 3 queues with weights 1:2:7; and 3) a hybrid scheme with

static meters for QoS1 and QoS2 and two DiffServ Queues with weights 3:7, with QoS1

and QoS2 going to the first and Best Effort sent to the second. If QoS2 was then able to

expand to 3.5 Gbps, in our scheme it would be allowed to do so, while QoS1 remained at

1 Gbps and, because it has no priority, Best Effort traffic would be throttled back to 5.5

Gbps, as in Figure 3.1.b. This is a marked contrast with the static meters-only approach,

where QoS2 would not be allowed to expand at all, QoS1 and Best Effort remain at their

rates and 1 Gbps of bandwidth goes to waste. As a result of the minimum guarantees made

by the Queues-only approach, Best Effort would remain at 6 Gbps at the expense of QoS2,

which is only allowed to expand to 3 Gbps. The hybrid approach fares no better than simple

metering in this case.

Now suppose that QoS1 could similarly expand to 2.5 Gbps. In our scheme Best Effort

traffic would be scaled back by an additional 1.5 Gbps while QoS2 remained at 3.5 Gbps

(Figure 3.1.c). If a static metering scheme were used instead, nothing would change; QoS2

and BE would remain steady while QoS1 would not be able to expand into the unused

1 Gbps of bandwidth. The queues-only scheme would penalize both QoS1 and QoS2 (at

approximately 1.33 Gbps and 2.66 Gbps, respectively) while Best Effort remained steady at

6 Gbps. The hybrid approach would severely penalize the QoS flows; again, nothing would

change as the static meters would not allow the flows to expand beyond their reservations

and 1 Gbps of bandwidth would go wasted.
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Finally, if QoS2’s potential utilization drops to 1.5 Gbps while both QoS1 and Best Effort

flows were capable of utilizing the extra 2 Gbps, in our scheme the extra bandwidth would

be assigned to the priority flow, QoS1 (Figure 3.1.d). In a meters-only approach, QoS2’s

throughput would drop 0.5 Gbps below its reservation, QoS1 would remain at 1 Gbps, and

Best Effort would pick up an extra 1 Gbps with an associated 0.5 Gbps of bandwidth wasted.

A queues-only approach would redistribute QoS2’s unused bandwidth between both QoS1

and Best Effort, yielding rates at approximately 1.06 Gbps for QoS1 and 7.44 Gbps for Best

Effort. A hybrid approach would penalize QoS1 with its rate cap while allowing Best Effort

to fully expand into the unused 0.5 Gbps.

Based on the above discussion, we expect to be able to show that a traffic engineering

approach based on real-time monitoring and adaptation of bandwidth allocation will in-

crease overall network utilization for priority traffic and improve the performance of client

applications that are able to exploit an increase in bandwidth share relative to alternative

strategies.

3.3 Algorithm Design

The AQoS algorithm controls bandwidth allocation to QoS flows on a per-flow basis. Byte

count and duration samples for every registered flow are collected from flow ingress switches

concurrently and used to derive rate statistics, which in turn drive the AQoS algorithm’s

logic. A timer configured during initialization controls the frequency with which both flow

states are sampled and the algorithm operates on the data that has been gathered up to

that point. Flow data is organized, converted into usable rate statistics and compiled into

histories on a per-flow basis. All samples gathered regarding known flows at any given time

constitute a snapshot, or an image of network state at the time of sample gathering. Over
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the course of a single flow management cycle, the rate data is analyzed and rudimentary

behavioral statistics (such as the direction a flow’s throughput is trending over the past

several cycles) is computed and compiled with previous statistics.

The operation of the algorithm can be divided into four high-level phases, or steps:

Characterization of the flows; seizure of bandwidth from underperforming flows; return of

seized bandwidth to needy QoS flows; and loaning out surplus bandwidth to greedy QoS

flows (i.e., flows that can make use of the extra bandwidth).

1. Characterization. During this step, a QoS flow’s rate history is inspected to gather

insight into its current behavior. This step is primarily concerned with identifying

whether the flow is in a relative steady state or has begun (or is continuing) to exhibit

an increasing or decreasing trend. The flow is marked appropriately. The algorithm

keeps the last 10 rate samples gathered from the network. At this time, as a trade-off

between the algorithm’s ability to react quickly and accurately, the past four samples

are actively used to extract short-term trends that predict the next few seconds with

reasonable accuracy.

2. Bandwidth share-out. QoS flows from which downward trends have been extracted

are inspected. Those that have previously taken on loaned bandwidth return whatever

portion they are no longer using. Flows that have gone below their reserved rates

similarly have any unused, allocated bandwidth added to a pool of bandwidth available

for loaning out in subsequent steps. For each flow that goes under its reservation, a

small slice of the unused bandwidth (currently 5%) is kept in reserve; if the flow should

begin to expand back into the bandwidth originally assigned, the algorithm will be able

to detect it and react accordingly.

3. Bandwidth return. QoS flows having throughputs beneath their reserved rates are

evaluated to determine if they have begun to expand back into the bandwidth assigned
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to their reservations. If this is the case then the algorithm first attempts to reallocate

unassigned bandwidth from collected bandwidth pools on a flow’s path. If that is not

sufficient then the algorithm will begin taking bandwidth back from other QoS flows,

from least to highest priority. Since Best Effort flows do not have priority, bandwidth is

simply taken from them while the QoS flows are free to continue using any extra band-

width they have acquired. This behavior holds except under extreme circumstances

where the network is so heavily loaded that Best Effort flows are effectively choked

out.

4. Bandwidth assignment. If any free bandwidth remains on their paths, QoS flows

that are at or near their reserved rates are tested to see if they will expand into it,

from highest- to lowest-priority. As Best Effort flows have no priority, their collective

bandwidth is fair game for the QoS flows—that is, if a QoS flow is able to expand it

is allowed to do so at the expense of Best Effort traffic. Once all QoS flows have been

serviced, any remaining bandwidth is handed over to the Best Effort flows.

At the heart of the algorithm is the network utilization graph, a specialized data structure

that the AQoS algorithm consults for the most current network usage data. Data structures

track port egress capacities, the outgoing bandwidth reserved for QoS flows and bandwidth

not utilized by QoS flows, per switch. These data structures are embedded in unidirectional

edges that connect the nodes representing individual network devices. Each node is connected

by two edges representing full duplex links between switches; one edge for each direction that

flows may travel across the link.

An Open Shortest Path First (OSPF) algorithm searches through the graph to find a

route consisting of the fewest possible hops over links with sufficient remaining bandwidth

during the reservation creation process. Links with insufficient remaining capacity are auto-

matically excluded from the resulting virtual circuit. A reservation subsystem persists flow
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path information, which the AQoS algorithm uses to trace a flow’s path and gather relevant

information during decision-making. As the AQoS algorithm generates rate data for the

flows, the network utilization graph is continually updated to reflect real network load as

new data becomes available.

The AQoS algorithm’s control subroutines are broken up into three primary components,

following the major steps outlined above, that execute in series during a flow management

cycle. Each is responsible for handling a different portion of analysis and control and is largely

dependent on the results generated by previous processing, if any—for example, seizing

bandwidth from under-performing is the first activity performed and so has no dependencies,

while returning bandwidth to needy flows is partially dependent on bandwidth collected in

the first step.

Every flow has an associated tracking variable, which can loosely be thought of as mod-

eling a flow’s observed rates, though it is not directly associated with any specific rate

measurement. This is a critical point to understand the design of the AQoS algorithm; it

models how expected flow behavior, derived from observed behavior, changes over time. It

therefore has a correspondingly tremendous impact on decision-making. The tracking vari-

ables serves two primary functions: When a flow is over its reservation and increasing, the

tracking variable acts as a tentative upper limit for the possible rates that the algorithm

expects to see and directly corresponds to the meter rate set on the flow’s ingress switch.

When it is shrinking below its reservation, the tracking variable more tightly follows the

measured rates and is used to determine how much of its reserved bandwidth can be handed

out to other flows. Most importantly, tracking variable values carry over from previous man-

agement cycles and so form the basis for the algorithm’s next round of decision-making. It

persists the most critical pieces of information from the algorithm’s previous decisions. The

compiled flow history provides the context.
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Algorithm 1 SEIZE-BW(networkGraph, flowDB)

1: for all flowinflowDB do
2: lowerbound← flow.tracking− CALC-WINDOW (flow.rate, flow.history)
3: if flow.rate < lowerBound then
4: decrease← CALC-OPTIMAL-DECREASE (flow.tracking, flow.rate, flow.history)
5: flow.tracking ← flow.tracking − decrease
6: flow.flagged← DECREASING
7: if flow.rate < flow.reservedBw and flow.history.last.rate ≥ flow.reservedBw then
8: reserved← GROWTHBUFF
9: else

10: reserved← 0
11: end if
12: ADD-TO-AVAILABLE-POOLS (networkGraph, flow.route, decrease− reserved)
13: end if
14: end for

The first component is responsible for identifying flows that are either under or are trend-

ing significantly downwards from their allotted bandwidth when above their reservations.

Each flow is examined in order of precedence. Algorithm 1 below outlines the logic in pseu-

docode. Ideally, a lower bound is calculated based on a model of the flow’s waveform trend

and variance that could trigger bandwidth seizure, based on a measure of confidence, as a

means of correctly distinguishing shrinkage from noise in the ingress rates. In practice this is

not a simple exercise; several variations were tried and all failed to consistently isolate actual

flow shrinkage cases from simple noise. Addressing this problem remains an open research

question. In the meantime, the CALC-WINDOW subroutine is a stub that reduces to 0, so

that the lower bound calculated is actually the value of the tracking variable. In preliminary

trials this proved an adequate substitute, though the algorithm does occasionally take away

bandwidth only to hand it back within the next few cycles. Optimizing this behavior would

require substantial investment in developing statistical methods that can consistently and

correctly differentiate between noise in the data and gradual downward trends.

If the measured rate falls below the lower bound then the flow is eligible for bandwidth

seizure and a decrease amount is calculated and subtracted from the tracking rate and added
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Algorithm 2 RETURN-BW(networkGraph, flowDB)

1: for all flowinflowDBwithflownotflow.flagged = DECREASING do
2: lowerbound← flow.reserved−CALC-WINDOW (flow.rate, flow.history)
3: if flow.tracking < flow.reservedandFIND-INCREASE (flow.rate, flow.history) =

TRUEorflow.rate ≥ lowerBound then
4: available← FIND-MAX-AVAILABLE-ON-PATH (networkGraph, flow.route)
5: optimal← CALC-OPTIMAL-INCREASE (flow.tracking, flow.rate, flow.history)
6: returned←MIN(available, optimal)
7: flow.tracking ← flow.tracking + returned
8: REMOVE-FROM-AVAILABLE-POOLS (networkGraph, flow.route, returned)
9: remaining ← optimal − returned

10: if remaining > 0 then
11: other ← GET-LOWEST-PRIORITY (flowDB, flow)
12: while remaining > 0 do
13: returned← returned+ TAKE-BW (networkGraph, flowDB, other, remaining)
14: flow.tracking ← flow.tracking + returned
15: remaining ← remaining − returned
16: other ← GET-NEXT-LOWEST (flowDB, other, flow)
17: end while
18: end if
19: flow.flagged← GROWING
20: end if
21: end for

to the pool of available bandwidth along the flow’s circuit. If the measured rate has fallen

below the reserved rate then a growth margin, or bandwidth buffer, is withheld and put

in reserve to allow the algorithm room to grow back into its reservation. The bandwidth

decrease calculation uses the maximum of either the difference between the tracking and

mean rate over the past few cycles or a bare minimum decrease in an attempt to keep

seizures conservative; the algorithm relies on the fact that continuing decreases will be caught

in subsequent cycles. The flow is also tagged as decreasing to disqualify it from consideration

by following components.

The second component, outlined by Algorithm 2, is responsible for identifying flows that

have shrunk below their reservations but begun to grow back into them. Now that all flows

eligible for bandwidth seizure have been identified, tagged and unused bandwidth added to
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Algorithm 3 REDISTRIBUTE-BW(networkGraph, flowDB)

1: for all flowinflowDBfromflow.priority = HIGHEST toflow.priority =
LOWESTwhereflownotflow.flag = NULL do

2: lowerbound← flow.reserved− CALC-NOMINAL-WINDOW (flow.rate, flow.history)/2
3: if flow.tracking ≥ lowerbound then
4: available← FIND-PATH-UNRESERVED(networkGraph, flow.route)
5: borrowed←MIN(available, optimal)
6: flow.tracking ← flow.tracking + borrowed
7: REMOVE-FROM-PATH (borrowed, networkGraph, flow.route)
8: end if
9: end for

the bandwidth pools along their paths (i.e, on the network graph), any flow expanding back

towards its reserved rate may borrow from any remaining unused bandwidth along its path—

with one exception. Only the minimum available along the path may be borrowed (more

would exceed the available bandwidth at the bottleneck), so if there is a link on the path

that has no available bandwidth then the flow still will not be able to utilize other unused

bandwidth pools on its path. Flows are examined from high to low priority, excluding any

that have already been tagged as shrinking.

In the case that a flow cannot expand into unused bandwidth, the RETURN-BW com-

ponent examines other QoS flows, from low to high priority, and will start taking bandwidth

back from the lowest QoS flow currently above its reserved rate. If that is not enough

then the next lowest is found, bandwidth is reclaimed, and so on. The flow is then flagged

as growing back into its reserved rate and subsequently ignored by the bandwidth loaning

component.

The final component is outlined in Algorithm 3. It manages the distribution of available

bandwidth to QoS flows that appear to be growing beyond the bandwidth reserved for

them. The algorithm consults each flow’s tracking variable to compare expected behavior to

a rate-increase threshold.
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3.4 Implementation

The algorithm is built on BigSwitch Network’s open source Floodlight controller [21], a

3rd-party controller framework that implements the OpenFlow 1.3 specification, a stateful

representation of the network topology, basic routing intelligence (following the so-called

learning switch paradigm) and little else—which makes it ideal as there are no extraneous

features to interfere with the algorithm. The algorithm belongs to a code module that is

dynamically loaded into the Floodlight runtime at initialization, placing it as close to the

controller’s southbound API as possible. The module integrates with the controller through

an internal API that exposes both controller functionality and provides a programmatic

abstraction of the OpenFlow protocol using the OpenFlowJ-Loxigen library [26].

3.4.1 Reservation Subsystem

The AQoS algorithm is built on two significant subsystems. The first is the reservation

subsystem, which is responsible for admitting new flows to the network, via the OSPF-like

topology search function discussed previously, updating reservation data on the network

graph as new QoS flows are admitted or expired, and pushing reservation (virtual) circuits

to the network. When a client reserves bandwidth across the network, the reservation system

attempts to find a path across the network that can meet the client’s bandwidth request. If

a path meeting the client’s criteria is not found the reservation is rejected. The reservation

system attempts to load balance across the network by assigning new flows to any least-loaded

paths it can find. Note that while no protocol allowing a client to negotiate a reservation

with the controller has been implemented, the code implementing admissions decisions is

fully in place.
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In a realistic setting, reservations may need to be made at multiple levels of the TCP/IP

protocol stack. The reservation system currently supports L2 (vlan) and L3 (IP) circuits;

each reservation type’s implementation also encapsulates the required details of creating

virtual circuits on the network fabric in a generalized fashion. The current implementation

only allows for preemptive circuit creation, meaning that circuits are created before flows are

admitted. This is more than adequate for the purposes of this experiment; a more flexible

strategy would allow a reservation to made in advance of the actual flow, and not push

the circuit to the network until traffic arrives on an in ingress node. This becomes rather

complicated when the necessary scheduling mechanisms that allow for real-time optimal

bandwidth allocations are introduced, and so is avoided for now.

3.4.2 Network Monitor Subsystem

The network state monitor subsystem is responsible for gathering network load infor-

mation from the fabric. This is handled through the mechanisms built into the OpenFlow

specification, which allows the controller to poll individual switches for byte/packet count

and duration data on a per-flow basis. Each switch is required to maintain this state infor-

mation for each flow matched on its flow tables. In addition, a switch may be polled for the

same statistics for each meter band, which tracks the bytes, packets that have been sent to

the meter band in addition to duration (how long the meter has existed).

To accommodate a large number of flows, the network monitor starts a new thread of

execution for each flow (reservation) that is registered, in which runs the code required to

specify a statistics request message, have it written out to the ingress switch in question, and

process the switch’s response message. The extracted (raw) data is then used to calculate

rate information. In this way, incoming flow rates are captured from ingress nodes on the
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network before packets are sent to the meter; these flow rate samples are then cached for

later access by the algorithm. Because tracking a flow’s past behavior is highly relevant to

determining its current behavior, each flow has an associated history that is compiled and

stored by the network monitor component.

At the lowest level, the network monitoring component runs a timer which is used to

coordinate polling requests. When the timer signals the network monitor component that

a given interval of time (configured during initialization) has expired, it in turns signals the

polling threads. Thus, flow statistics requests are sent out and received by the switches (bar-

ring latency in the control network) nearly simultaneously, capturing a complete snapshot

of the total load across the entire network on a node-by-node, per-flow basis.



CHAPTER 4

RESEARCH METHODS

Our evaluation of the algorithm addresses two primary questions: 1) Does it increase

overall efficiency of the data transfers when it is possible for such flows to take advantage of

bandwidth sharing; and 2) Is there a case for using it in place of alternative traffic engineering

approaches such as DiffServ queues, standard (OpenFlow) metering or a hybrid approach?

4.1 Topology

A simple six-switch topology (shown in Figure 4.1 below) is used to establish the cor-

rectness of the algorithm in a straightforward, uncomplicated scenario as a baseline, and to

benchmark our algorithm against the DiffServ queues, static meters and queue-meter hybrid

approaches. Five traffic source hosts are linked to five traffic sink hosts on the far end of

the topology. Traffic coming in on the ingress switches merges on the near bottleneck link

Figure 4.1: Simple six-switch topology with bottleneck link and flows directed from left to
right
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switch and then forks off to the appropriate egress switch on the far side. This configura-

tion was specifically designed to demonstrate the AQoS algorithm’s capability to identify

a common bottleneck on the network and coordinate flow management mechanisms across

multiple ingress nodes.

Comparison data for the alternative approaches is gathered on the egress nodes. During

trials using competing approaches, the algorithm is disabled and the appropriate rate-shaping

mechanism is set by the controller (static meters) or configured by hand on the switches

(DiffServ queues).

4.2 Organization of Experiments

Data concerning a single QoS method is gathered during a trial. A single experiment

consists of four trials, one for each competing approach: AQoS, Static Metering, DiffServ

Queues, and Hybrid. To recap, the Static Metering method uses OpenFlow meters to carve

out static bandwidth slices. The DiffServ Queues method uses the queuing strategy described

in 2.2. The Hybrid method combines the Static Metering and DiffServ Queues strategies so

that QoS flows are ”metered” and all traffic is sent to one of several queues, with Best Effort

receiving a dedicated queue.

Experiments are grouped into complementary sets of two which differ in traffic generation

strategy. One experiment uses traffic generated at specific waveforms at specific times. The

second uses randomized traffic that is generated at rates within ranges that directly corre-

spond to the counterpart experiment rates. Both traffic generation strategies are designed

to guarantee congestion at all times on the bottleneck. These are covered in more detail in

the following section.
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At the highest level, experiments are organized into four major scenarios of interest,

differing in the percentage of the bottleneck link capacity left unreserved (i.e, given over to

Best Effort flows). Bottleneck link capacity is split 20/80, 30/70, 40/60 and 50/50, with

slices given to unreserved (Best Effort) and QoS, respectively: In the 20/80 scenario, 80% of

link capacity is set aside for QoS flows and 20% left unreserved; in the 30/70 battery, QoS

flows are reserved 70% of link capacity and 30% is left to Best Effort, and so on.

One objective while conducting background research regarding the design of the experi-

ment was to find descriptions of QoS queuing policies in use in real-world systems. Unfor-

tunately, there seems to be little to find in the way of queuing profile specifications. The

motivation for evaluating several BE/QoS traffic proportion configurations was born from

this lack of background information. In any case, different networking applications are bound

to have different needs depending on a multitude of factors, including size and capacity of

the network, the average number of client applications loading the network with traffic at

once and the size and characteristics of the flows themselves—to name only a few. There

are therefore likely to be a wide range of real-world configuration examples; the chosen

configurations should adequately cover the gamut of those likely encountered in real-world

networks.

A final argument for having this specific range of configurations concerns the fact that

the performance of the AQoS algorithm is expected to increase with increasingly greater

proportions of Best Effort traffic. The AQoS algorithm, as illustrated in the above conceptual

mockup, is designed to take bandwidth from lower-priority flows to optimize higher-priority

flow performance. Higher BE-to-QoS ratios are expected to show increasing gains in favor

of the QoS flows over competing QoS approaches. The point at which those gains become

significant is critical to any evaluation of the AQoS algorithm’s overall performance—and

ultimately how useful it would (or would not) be in a real network.
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Table 4.1: Scenario 1 QoS, BE specifications for randomized and controlled waveforms

4.3 Traffic Generation Parameters

Traffic generation follows two distinct schemes, which we characterize as synthetic and

randomized. Synthetic flows (also sometimes referred to as designer flows) are tightly con-

trolled; that is, traffic generation follows specified waveforms, with incoming traffic having

rates which change at controlled intervals. In contrast, randomized flows are not constrained

to prescribed waveforms, though they still fall within given intervals. These two schemes

provide opportunities to both examine the behavior of each approach under very specific

conditions—that is, targeted QoS-to-BE load ratios—as well as more chaotic conditions

that are intended to be representative of real-world networks under significant load.

Flow specifications for each scenario are given in Tables 4.1 through 4.4. All synthetic

flows follow the specification for their QoS priority. Intervals are set to 10 seconds, and after

each interval elapses the rate generation for a QoS flow increases or decreases to the next

specified. The specifications for synthetic flow waveforms are given under the Controlled

Waveform columns, and are used across trials with the AQoS, static meters, DiffServ queues

and hybrid approaches. Due to their relative stability synthetic rate trials use only 10
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Table 4.2: Scenario 2 QoS, BE specifications for randomized and controlled waveforms

Table 4.3: Scenario 3 QoS, BE specifications for randomized and controlled waveforms
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Table 4.4: Scenario 4 QoS, BE specifications for randomized and controlled waveforms

intervals, and flow data is collected from the egress switches at a rate of 1 sample per second

for a total of 200 samples per flow per trial.

The controlled waveforms have been specifically tailored to keep the bottleneck link

reasonably congested, while still bearing a reasonable semblance to real traffic; the AQoS

algorithm’s performance is also expected to improve as congestion increases, up to the point

at which Best Effort bandwidth is exhausted and the algorithm must try to scavenge band-

width from lower-priority QoS flows if it can. Keeping the link congested as a result of QoS

traffic gives the AQoS algorithm the most opportunities to distinguish itself from compet-

ing approaches. However, care has been taken not to allow the bottleneck link to become

oversaturated with QoS traffic, and so there is always sufficient remaining bandwidth to

accommodate Best Effort traffic.

A randomized flow for a given priority is generated at a rate based on the ranges given in

the Randomized (Rand) Range columns of Tables 4.1 through 4.4. These limits are designed

to constrain QoS flow to ranges similar to the minimum and maximums of the corresponding

synthetic flows. Synthetic flow ranges were chosen for the randomization trials to keep

random flow results relatively consistent with synthetic flow results; in combination, the
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ranges do a reasonable job of guaranteeing the bottleneck link is congested as average QoS

rates exceed the reservations.

Like the synthetic flows, a randomized flow holds at a given rate for a 10 second interval

before the traffic generator randomly picks another throughput value. Due to the random

nature of the resulting data each trial lasts for 30 intervals, and with a sampling rate of once

per second, a grand total of 600 samples is collected per flow per trial.

4.4 Analysis Strategy

The data collected from the trials is first analyzed on a qualitative basis. The cumulative

(total of all flows) ingress and egress traffic rates are calculated for each trial and then

compared to illustrate each method’s traffic-shaping characteristics. A per-flow ingress,

egress rate comparison is then drawn to illustrate how each method handles incoming traffic

in excess of a QoS flow’s reserved rate; profiles are also constructed for Best Effort to illustrate

the differences between each method’s treatment of the lowest-priority flow.

The increase (or decrease) in the observed throughputs obtained from the AQoS algorithm

against competing approaches, expressed as percentage gains, are then evaluated over the

lifetimes of the individual QoS flows. This comparison is only valid for experiments that

rely on designed traffic patterns (the so-called static flow trials), as all flows including Best

Effort must be nearly identical at all times across all trials belonging to a scenario.

Next the average throughputs for each flow are computed, which are then used to calculate

overall percent gain of throughput between the algorithm and competing approaches. Gain

is calculated on both per-flow and aggregate bases for each scenario (e.g., 20% unreserved,

30% unreserved, etc.), once for synthetic flows and again for the randomized flows. Gains in

terms of total overall throughput of all flows are also calculated. The QoS gains are expected
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to illustrate how performance improves with increasing Best Effort loads and to provide the

quantitative groundwork for determining the point at which the AQoS algorithm begins to

show significant QoS flow performance benefits.



CHAPTER 5

EVALUATION

5.1 Testbed Architecture

The simulation architecture used to evaluate the AQoS algorithm is composed of a single

controller, multiple virtual switches and traffic generators on simulated hosts:

• Controller: Floodlight

• Switches: Open vSwitch 2.5.1 running on Ubuntu Server 16.04 (physical host)

• Traffic generation: iperf2 processes running in UDP mode chained in sequence to

simulate variable rate flows

• Network monitor: Floodlight monitoring component that queries switches for flow

statistics

The virtual network—including virtual hosts—is built on a single physical machine. The

virtual network switches connect to a Floodlight controller running on a separate physical

host via a physical network. No traffic between virtual hosts generated on the virtual network

leaves the virtual network, and so the physical network is dedicated entirely to network

control traffic. The virtual network host is a single CPU system with 8 physical cores

running at 3.2 GHz, scalable to 4 GHz under load, for a tally of 16 logical cores running at

approximately 2.0 GHz under load. The virtual network host additionally boasts 16 GBs of

RAM in addition to 16 GBs of swap space allocated on a solid-state drive with a theoretical
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read/write bandwidth of (approximately) 4 to 6 Gbps. The controller host is somewhat less

powerful, with 4 cores running at 2.2 GHz.

5.1.1 Virtual Network Configuration

The 2.5.1 stable branch of the Open vSwitch software switch project [27] provides the

switch instances on the virtual network. The standard release of Open vSwitch does not

include support for OpenFlow 1.3 meters; an experimental code patch, proposed by an

Open vSwitch developer, provides the missing functionality. The code patch provides solely

a user space datapath implementation, requiring that switch instances must be run in user

space mode. This had a direct impact on the design of the experiment; kernel space switch

instances are capable of switching at Gbps rates, while user space instances are constrained

to Mbps ranges. Additionally, because of its experimental status the meter implementation

is relatively crude and lacking optimization, and this was expected to have an impact on the

quality of the data gathered during the AQoS, static meters and hybrid trials.

Switch instances are created and configured with OpenFlow datapath IDs, which are

required for the controller to track and communicate with them. The IPv4 address and

listening port of the controller are also configured per switch. Once the configuration work

is done the switches automatically begin sending handshake packets to the set controller

address.

Inter-switch links are implemented with virtual Ethernet (or veth) pairs, which implement

kernel space data pipes between a pair of virtual interfaces that can be bound to by host

processes. Each endpoint is attached to a switch instance, forming a direct path for network

traffic to traverse between switch instances. Veth endpoints are TAP interfaces, meaning

that they provide L2 data frame encapsulation for IP packets. Virtual links created from
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Figure 5.1: Topology configuration specifications

veth pairs function in the same manner as physical Ethernet cables; kernel space buffers

implement a full duplex data pipe that connects the link endpoints.

The core network topology is built using this method. Referring to Figure 5.1, ingress

switches s1 and s3 are connected to s2. The bottleneck link is then created between s2 and

s5. The egress switches s4 and s6 are then connected to s5.

The implementation of a virtual host is fairly straightforward, though not obvious. Traffic

between processes, even when bound to veth endpoints, defaults to the host’s loopback. This

generally useful feature has the unfortunate side effect of complicating network emulation,

as any traffic sent from one host process to another will always short-circuit and bypass the

virtual network. Fortunately Linux provides a natural extension to the kernel’s interface

and routing table implementation that allows a user to isolate both physical and virtual

interfaces within a network namespace. Traffic sent between processes running in separate

network namespaces is forced to use the interfaces embedded in those namespaces; as each

network namespace implements its own loopback, there is no way for traffic to get from

one process to another over the default namespace loopback. Each network namespace also
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receives its own routing table and iptables (firewall), so each can literally be configured

to behave like a physically distinct host. Processes, such as ping, netstat and iperf, can

be executed from within a network namespace via the ip netns exec command. Note that

executing a process in a network namespace requires root privileges.

Veth pairs can also be used to create links between processes in different network names-

paces. They are in fact the only mechanism that Linux provides out-of-the-box that can do

so. Referring again to Figure 5.1, virtual hosts h1 through h3 are created in this fashion

and connected to virtual switch s1, hosts h4 and h5 are configured and connected to switch

s3, hosts h6 through h8 are configured and connected to s4, and hosts h9 and h10 are

configured and connected to s6.

Host NIC bandwidths are set (via the AQoS network topology graph) to 3 Mbps and

inter-switch links are configured at 5 Mbps. These numbers are a consequence of the virtual

network creation method; kernel space to user space translation and buffering of the traffic

(recall that Open vSwitch must run in user space mode) imposes considerable constraints

on the amount of traffic that can be generated per host. Though the cause was never

identified, it was established early on that flows bound for the ingress switches become

increasingly unstable as they cross network namespace boundaries as they grow in volume;

this phenomenon never manifested when running Open vSwitch in kernel space mode.

Two of the competing approaches used to benchmark the AQoS algorithm’s performance

also require the use of DiffServ queues. Open vSwitch provides queuing that uses Linux

Queuing Disciplines (or QDisc) to implement rate shaping. Queues are configured to use

the HTB QDisc algorithm, which provides a policing mechanism most similar to traditional

DiffServ queues. A maximum rate cap across all queues is specified in addition to the

minimum rates enforced (under load) by the queues.

Three queues with separate minimum rate configurations are used in each scenario. Table

5.1 details the queue configurations for each and which flows are directed to them. Note that
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Table 5.1: DiffServ queue configurations. Scenarios 1, 2, 3 and 4 refer to 20%, 30%, 40%
and 50% unreserved bandwidth scenarios, respectively

in the queues-only trials, multiple flows directed to a single queue will create congestion on the

parent switch with the associated packet loss expected when flows compete for bandwidth.

To keep the configuration as simple as possible, and due to the fact that no congestion is

allowed by design on the ingress switches themselves, the QoS queues are configured on the

near bottleneck endpoint switch s2, port 3.

5.1.2 Controller Configuration

The controller’s network topology graph must be configured to match the virtual network

topology. Due to time constraints, the management of this graph must currently be done by

hand, though a planned extension to the AQoS module will eventually allow so-called man-

agement plane software to remotely configure the AQoS topology graph via the controller’s

REST API. An internal graph management API currently allows users to easily configure a

topology, though a recompile of the module is required after any change. The topology graph

is also built to the specifications given in Figure 5.1. By design the AQoS algorithm does

all policing on the ingress nodes. Referring once again to Figure 5.1, using the configured

network topology graph the algorithm will create and manipulate the rate caps of meters

located on switches s1 and s3 to preemptively minimize (and ideally eliminate) congestion

on switch s2.
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Reservations must likewise be configured within AQoS module code. Another planned

extension will allow client applications to negotiate a reservation, but both the protocol and

the REST interface must be designed and implemented. Reservations therefore must also be

configured by hand, which unfortunately limits the potential to test the AQoS algorithm with

truly dynamic, more realistic networking scenarios where hosts requiring reservations across

the network are not necessarily known at design time. An internal API makes configuring

reservations relatively painless. The controller does need to know about node-specific flow

configurations—queuing flows for DiffServ policing is a prime example—which tends to make

configuring TCP/UDP circuits a bit more complex.

5.1.3 Traffic Generation

Experiments rely on UDP traffic that is transmitted from each sender host at specific

bandwidths at specific times via the iperf2 IP trace client. The UDP protocol is used

instead of TCP since the iperf2 UDP client allows transmission bandwidth to be specified.

Other IP trace clients such as nuttcp [28]—which does allow trace clients to send TCP

traffic at specified bandwidths—were examined but discarded due to negative impacts on

the performance of the virtual network.

The iperf-series shell script encapsulates logic that chains together a series of iperf2

processes to generate flows with controlled waveforms. The target virtual host and iperf

receiver process address are provided to the script. Additionally, the desired interval—or

duration of the individual iperf processes in the chain—and a directive indicating whether

the script should generate traffic conforming to a specified waveform or simply randomize

send rates is provided. If traffic rates are not randomized the intended waveform is given as

a series of transmission rates, one for each interval. If traffic rates are randomized, upper
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and lower bounds for the transmission rates as well as the lifetime of the flow are provided

instead. The iperf2 client streams traffic at a constant rate during each interval in both cases.

In practice, there are always fluctuations in iperf2 send rates, which is a useful trait given

that real flows on real networks typically will not converge to perfectly steady throughputs;

this lends a small degree of authenticity to the traffic patterns to be managed by the AQoS

algorithm.

Referring back to Figure 5.1, iperf-series jobs are initiated in virtual hosts h1 through

h5. Iperf2 servers running in virtual hosts h6 through h10 sink the generated flows. Syn-

thetic flow traffic is generated according to the waveform specifications given in Tables 4.1

through 4.4 of §4.3. As previously mentioned, this is accomplished very simply by running

the iperf-series script with the spec mode argument and supplying a list of the desired rates.

Guaranteeing a level of consistency useful for a comparative analysis of the competing ap-

proaches during randomized flow trials is somewhat more involved, but still made as simple

as possible by the iperf-series script, which logs the random rate sequence generated when

the script is run with the random mode argument. The first trial (typically AQoS) in a

category is run with a randomized iperf-series job; the rates recorded in the log are then

used to create iperf-series jobs for subsequent trials.

In practice, using multiple concurrent series of iperfs to generate traffic imposes practical

limitations on the length of the intervals and the number rate changes that can be used.

This is related to the fact that as concurrent iperf clients are launched and terminate, they

tend to fall out of synchronization for a variety of reasons. The largest factor though seems

to be that, as a side effect of the rate shaping with a sub-optimal meter implementation,

iperf2 ’s L7 FIN/ACK packets tend to be lost in policing. This has the effect of delaying the

iperf2 client from closing as it resends its FIN packet up to ten times in an attempt to elicit

a response from its iperf2 server counterpart. Maximizing the quality of the data requires

both increasing the length of the intervals so that a majority of the send rates across the
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Figure 5.2: Topology configuration specifications (repeated)

flows are as synchronous as possible, and reducing the number of rate changes since each is

directly related to how often an iperf client attempts to FIN/ACK.

5.1.4 Data Collection

Data is gathered by the monitoring component through the controller’s so-called south-

bound interface via the OpenFlow protocol. In addition to providing the data that drives

the algorithm’s control logic, the monitoring component logs all observed throughputs for

known flows on their respective egress nodes, as well as control information such as the rate

limit enforced for a flow at any given time and that flow’s priority rating. Egress rate data

is collected on switches s4 and s6 (Figure 5.2).

Throughputs collected from the egress node are not used by the AQoS algorithm but

provide experimental data that can verify that flow rates are correctly adjusted. The data

used to evaluate the algorithm’s correctness and performance is taken from both sets of logs

(ingress and egress). Data is collected in the same way during the benchmarking trials for
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Figure 5.3: Measured ingress against egress rates, overlaid with tracking/reservation for
QoS1, QoS2 and BE Flows, from 40% BE scenario

the alternative approaches, though the ingress rates are simply documented instead of used

as a driver for the examined approach.

5.2 Analysis

The per-flow analyses shown in Figure 5.3 illustrate the behavior typical of the approaches

considered. The results shown are taken from the 40% unreserved synthetic flow experiment.

They are highly representative of the results gathered from all categories; the ingress-egress

rate translation characteristics are nearly identical, differing only in how the differences

scaled. They are also somewhat easier to digest than their randomized flow counterparts.

The AQoS algorithm results show that the QoS egress rates closely follow the ingress

rates in all cases. Note that both are closely bounded by the tracking variable’s value. The

algorithm does exhibit sensitivity to significant upward spikes in the measured ingress rates.



44

This has the effect of eating into any remaining bandwidth that could be used by Best Effort

traffic, with a corresponding reduction in the overall throughput of Best Effort flows.

Figure 5.3 also shows that the static meters method caps traffic at an unchanging rate

so that flows coming into the network at higher rates are consistently throttled down to the

static rate cap as expected. Unless ingress rates fall at or below the reserved rate, the static

metering approach invariably results in considerably reduced throughput of QoS flows when

compared to the AQoS algorithm results. On the other hand, Best Effort traffic fares better

on average as no QoS flows are allowed to coopt available bandwidth.

The hybrid method results shown differ very little from the static meters results, which

is not terribly surprising given the fact that only the Best Effort traffic is uncapped (i.e.,

not throttled back by a meter). Just as QoS flows were throttled down in the static me-

ters method, the hybrid method results show considerably reduced QoS egress rates when

compared against the AQoS results.

The final competing method for consideration is DiffServ queues. Figure 5.3 illustrates

how DiffServ queues enforcing minimum guarantees shape traffic; in general, egress rates

are still depressed, but the difference is proportional to the minimum guarantees of the

other queues and the volume of traffic sent to them. While there is a marked improvement

over both static metering and hybrid methods, QoS flow results under the DiffServ queue

method still cannot compete with the AQoS algorithm’s results in terms of QoS throughput.

However, the situation is very different from the perspective of Best Effort traffic; Best Effort

does extremely well under DiffServ queues. In randomized flow trials, typical Best Effort

performance is second only to the hybrid method.

Some variability in the egress rates, where more traffic is sometimes observed exiting the

network than should be observed given employed rate-shaping mechanisms, can be found on

closer inspection of nearly all figures. This phenomenon manifests across all trials, and will

be revisited in later discussion.
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Figure 5.4: Cumulative ingress and egress rates against bottleneck capacity (rates in Kbps)
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Figure 5.4 (above) shows cumulative ingress and egress observations for each class of flow.

The graphs in these figures are drawn from the 40% Unserved synthetic flows experiment.

Note from the top row of panels in Figure 5.4 that the AQoS algorithm results in cumulative

QoS egress throughputs that are nearly identical to ingress rates, just as the individual flow

analyses showed matching rates. Best Effort traffic alone is shaped down so that the total

of all traffic is nearly 5 Mbps at all sampled intervals.

The Queues Only approach has a somewhat different effect on the overall measured

throughputs. A comparison of ingress and egress rates in the second row of panels in Figure

5.4 corroborates earlier observations of the scaling effects of the queues. The overall shapes,

or geometric properties of the throughput waveforms are preserved at all sampling intervals.

Some attrition on the rates is apparent, but affects all traffic types. As expected, Best Effort

throughputs are affected least by traffic shaping in the queues.

The egress throughputs resulting from the Static Meters method are the most uniform

across all samples. Recall that the rate caps imposed by the meters throttle back all flows

that are over their reservations. The third row of panels in Figure 5.4 illustrates the sum

results of this approach to traffic shaping. The near uniformity is a result of the rates chosen

for the synthetic flow trials, as QoS rates are often over. As expected, occasional drops of

the QoS throughputs below their rates show as slight dips in the graphs. Unfortunately, the

total throughputs of all traffic types does not fall below 5 Mbps and so this example fails to

illustrate the tendency for the Static Meter approach to waste link capacity when there is

not enough traffic to congest it.

The fourth panel row in Figure 5.4 illustrates an interesting point concerning the Hybrid

approach. The observation that egress rates of the QoS flows in the third panel row are nearly

identical clearly demonstrates that in terms of QoS flow performance, there is essentially no

difference between the two approaches. The only salient difference is to the benefit of Best

Effort traffic, as the Hybrid approach allows it alone to expand into unreserved bandwidth.
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Figure 5.5: Performance gains for 20% Unreserved (BE) Scenario

Figure 5.6: Performance gains for 50% Unreserved (BE) Scenario
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Figure 5.7: QoS and total average throughputs by traffic type and category

Figures 5.5 and 5.6 show QoS lifetime percent gains per flow achieved by the AQoS

algorithm against competing approaches. Figure 5.5 illustrates the worst case performance

in terms of amount of unreserved bandwidth available, while Figure 5.6 clearly illustrates

highly favorable gains. Despite some dips into negative numbers, both cases clearly show the

AQoS algorithm consistently giving better average performance against all other considered

methods. These results by themselves are highly suggestive, but an increase in gains by

unreserved bandwidth percentage becomes clearly evident when results from 30% and 40%

unreserved scenarios are included (omitted for brevity).

Despite efforts to prevent it, some amount of noise enters the gains calculations where

traffic generation rates do not quite match between AQoS and competitor, resulting in the

minor downward spikes observed throughout. An examination of ingress measurements

reveals that the significant spikes, both upwards and downwards, occur where AQoS or

competitor QoS flow rates taper off asynchronously, which illustrates a more serious kind

of mismatch between flow generation rates and points to flaws in the traffic generation

implementation.
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(a) AQoS QoS percent gain over DiffServ queues (b) AQoS overall percent loss against DiffServ
queues

Figure 5.8: AQoS QoS gains and overall throughput losses against DiffServ queues by sce-
nario

Figure 5.7 shows a comparison of QoS and total throughputs by category. The AQoS

algorithm shows average QoS throughput gains in every category for both flow generation

schemes, synthetic and randomized. Figure 5.8a plots the gains as a function of unreserved

(BE) bandwidth percentage for AQoS against the Queues Only method; the synthetic traffic

gains exhibit an exponential increase, evident in the worst-case comparison (Queues Only)

and becoming markedly more pronounced for other methods. In the worst case, taken

from the 20% Best Effort randomized results, the AQoS algorithm shows a 4.40% gain over

DiffServ queues. In the best case, taken from the 50% Best Effort synthetic results, the

AQoS algorithm yields an 18.57% gain over DiffServ queues.

The situation differs when the total average throughput of all flows is considered; the

AQoS algorithm performs consistently worse than all other competing methods. However,

the calculated loss is consistently below 5% and as Figure 5.8b shows there does not appear

to be any significant trend in any direction as Best Effort percentage grows.



CHAPTER 6

DISCUSSION AND CONCLUSIONS

The results given in the average throughputs table are generally favorable towards the

AQoS algorithm. QoS flows are clearly favored over the Best Effort flows, and as a result

the average throughputs are substantially increased over the average QoS throughputs of all

competing methods.

The results show however that there is a caveat; the total overall throughputs (including

Best Effort) take a small hit when comparing the AQoS algorithm results against the DiffServ

Queues and Hybrid methods. Some reduction in total average throughput was expected; the

algorithm reserves a small percentage of bandwidth allocated away from underperforming

QoS flows and uses it as a growth-detection buffer. That collective bandwidth is essentially

lost to all flows when QoS flows underperform. However the average amount of total band-

width lost during the AQoS algorithm trials is somewhat surprising. This in addition to the

noise in measured rates and the occasional drops in traffic generation could explain some

of the reduction. However, because the algorithm takes time to react to changing flows we

expect there will always be a trade-off between QoS gains and total utilization.

These observations are reasonably correlated by the data. Note that, as illustrated by

Figure 5.8b in §5.2, there is no significant increasing trend in total average bandwidth loss as

unreserved bandwidth percentage increases. The amount of congestion on the line is also not

expected to have any significant influence. However, increasing the number of QoS flows on

the topology could have an impact if a substantial number were to underutilize their assigned

bandwidths. This suggests that in addition to reassigning bandwidth, a better strategy might

include adjusting the initial reservation to more closely match observed rates. Such a policy
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(a) Egress rates consistently exceeding meter cap
(QoS 2, 30% BE synthetic Static Meter)

(b) Egress rates generally conforming to meter cap
(QoS 4, 30% BE randomized Static Meter)

Figure 6.1: Behaviors of the OpenFlow meter implementation

may or may not appeal to network administrators, though considering the algorithm’s ability

to meet QoS demands in the presence of sufficient unreserved bandwidth it likely makes little

difference in practice.

There are also anomalies in the total average throughput results in the competing meth-

ods shown in Figure 5.7 of §5.2, notably static metering and DiffSev queues. In the case

of static metering, the total average throughputs are unusually close to the bottleneck link

capacity given the fact that, particularly in the synthetic trials, the flow rates were designed

to guarantee that while some QoS flows were over their reservations, others would be under

at least some of the time. However, in both the 30% and 40% Best Effort scenarios static

metering gives total average throughputs higher than the DiffServe queues results. Barring

measurement inaccuracies, the situation should be consistently reversed.

Figure 6.1a illustrates a significant problem with the current Open vSwitch meter im-

plementation that sheds some light on these observations; for each flow shown there is a

considerable amount of egress traffic in excess of the rate cap set by the meters. Further-

more, this excess is not consistent; a good portion of the time the metering is reasonably

close to where it should be, as in Figure 6.1b. The problem appears in the results of all trials
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that relied on the OpenFlow meter mechanism but is most apparent in the static metering

trials. Conversely, the results also show considerable drops in throughput below the meter

rate, especially evident in the AQoS results. The fact that our experiment relies on a largely

untested and unproven meter implementation must be taken into account, and casts some

doubt upon the quality of the results.

Despite the fact that the reliability of the static metering trial results must be called into

question, the main thrust of the benchmarking has always been targeted towards the AQoS

algorithm and the DiffServ queues approaches. The truly critical question is, how much does

this affect confidence in the AQoS trials results? As already discussed, the static metering

trials exhibit the worst excess; though still present to some degree, the excessive egress rates

are much less prominent in the AQoS algorithm trials. For example, in the 30% synthetic

traffic AQoS algorithm trial, on average the observed egress rates exceeded their meter rates

by better than 5% approximately 5% of the time, whereas the 30% synthetic static metering

egress rates exceeded their meter rates (with the same margin of error) approximately 35%

of the time on average. These percentages are fairly representative of the random rate trials

as well as those of other Best Effort percentage categories. It has additionally been observed

that egress rates tend to fall below rate limits during the AQoS trials; approximately 5% of

QoS traffic is lost on average. In some isolated cases QoS flows lost as much as 10% of their

expected egress traffic. The obvious difference between the AQoS trials and static meter

trials is that rate limits are constantly adjusted in the former. This further reinforces the

conclusion that faulty packet buffer management in the meter mechanism is at the heart of

the observed inconsistencies.

The DiffServ queues total average throughputs were also somewhat lower than they

should have been. Several known factors likely influenced the results: 1) Measurement

inaccuracies due to clock drift; 2) the virtual nature of the network, which creates both

significant memory and CPU scheduling overhead; and 3) the HTB Queuing Discipline
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(QDisc), which is implemented in the network stack (i.e., kernel space) and heavily used by

a user space virtual switch, where all traffic must be buffered and copied over between the

switch process and HTB system calls. Finally, the user space switch instances are especially

susceptible to the non-deterministic side effects of OS resource scheduling and virtual paging.

Despite these measurement and implementation challenges, the algorithm is expected to

scale well in supplemental work. There is sufficient reason to expect that the algorithm could

also scale in physical deployments with substantially larger and more complex topologies

and hundreds or thousands of flows. Next steps include testing greater numbers of flows

on larger, more complex topologies, verifying that the algorithm’s resource footprint scales

reasonably well as the number of managed flows increases, verifying that results are consistent

when run on completely physical networks, and examining the algorithms’ impact on TCP

performance.

6.1 Conclusions

The results demonstrate that the AQoS algorithm delivers an overall increase in efficiency

of QoS data transfers over competing approaches, from approximately 4% in the worst case to

better than 18% in the best case. In contrast to initial expectations, this is accomplished at

the expense of overall utilization of the network bottleneck links. The cost is fairly minimal,

averaging around 2.4% in more ideal conditions, however any real-world application of this

algorithm would need to take this factor into account; if a network application’s primary

goal is overall utilization then the AQoS algorithm would not be ideal. This may be a hard

pill for network administrators to swallow in practice.

Another factor that must be considered in a real networking application is expected

levels of congestion. As demonstrated, the gains achieved with the AQoS algorithm increase
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as both the volume of non-essential traffic and overall congestion increase. Only a close

assessment of the expected frequency, duration and severity of competition between priority

and non-priority traffic will answer the question of whether or not the AQoS algorithm

provides sufficient returns to justify its overhead—in terms of controller resources and the

network carrying control traffic, out-of-band or in-band—and a somewhat diminished overall

network utilization.
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