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A concept map can be used to represent knowledge. A causal map is a type of concept map and

a graphical way that can be used to define thinking of an individual about a system by using links

between nodes in a network to represent causation or influence. A causal map thus can be used

to solve ill-structured problems and evaluate student’s assignment. Causal maps can also be used

to generate feedback for a student by comparing it with an expert map. However, exact network

comparison is an NP-complete problem and is known to be graph isomorphism problem.

In order to solve the problem, an online platform is created, where instead of exact graph com-

parison mathematical techniques such as graph edit distance, graph kernel, and graph embedding

are used to measure how closely two networks match. Before performing comparison it is impor-

tant to establish a common set of terms between two networks, as a student term might have a slight

variations in the way they name the included concepts in causal map. This requires alignment of

terms which is often contextual, the process is eased by implementing a recommendation system

by leveraging alignments done by other users. Step by step feedback is generated to guide the

student in developing their understanding of a system. This software can be used in Massive Open

Online Course (MOOC) and classroom-based system, where assessing the learning experience and

providing feedback to a large number of participants is an ongoing challenge.
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“Would you like me to give you a formula for
success? It’s quite simple, really: Double your
rate of failure. You are thinking of failure as
the enemy of success. But it isn’t at all. You
can be discouraged by failure or you can learn
from it, so go ahead and make mistakes. Make
all you can. Because remember that’s where
you will find success.”

- THOMAS J. WATSON, JR.,
Speech at the University of Pennsylvania,

1973
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CHAPTER 1

INTRODUCTION

Problems in the classroom are often well-structured as they have predefined answers. Assess-

ing a student’s work thus consists of contrasting the student’s answer to the set of valid answers.

However, the problems faced by practitioners are frequently ill-structured problems (ISP) as they

admit a much broader set of solutions, which are often contextual [67], i.e., they might depend

on the context to which a solution is applied that includes preferences and values. To solve an

ISP, students use skills in hypothesis generation and causal reasoning. That is, they form a men-

tal representation that integrates interacting and competing context-dependent factors, and then

evaluate the consequences of possible actions based on this mental representation. Since instruc-

tors cannot assess the mental representation internally held by students, it is typically externalized

in the form of dialogues or essays. However, instructors lack scalable and reliable technological

solutions to assess such forms of solutions, and this assessment challenge limits the use of ISPs

in the classroom [111], making it seem supplemental to coursework instead of being a driver of

instruction [84].

A mental representation of a problem can also be externalized in the form of a causal network,

which articulates causal factors as well as their antecedents and consequents Figure 1.1. Many

software tools allow students to generate causal networks (e.g., Coggle). Tools are also starting to

emerge to help with their assessment [32, 56]. Given the open-ended and context-sensitive nature

of ISPs, one way to assess causal maps is by contrasting a student’s map with an expert’s map.

Studies on problem solving have revealed that expert and novice understanding differ in several

ways, including a greater understanding of causality and conditional rules [48], as well as foresee-

ing multiple causal processes [58]. While this provides a clear rationale to contrast student’s and
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expert causal networks, a perfect comparison is computationally infeasible. For instance, finding

the largest part of a student’s network that matches the expert’s (i.e., sub-graph isomorphism) is

an NP-complete problem [8]. The comparison becomes feasible when the networks have unique

concept names [16], but terms in the students’ networks are unlikely to be exactly the same as the

expert’s (Figure 1.1). Giabbanelli and Tawfik recently developed software to align the student’s

terms with the expert’s terms (Figure 1.2) [32]. However, the software requires extensive work

by humans to perform alignments for every term as illustrated in Figure 1.2c, and it provides only

rudimentary metrics after the alignment is performed (e.g., number of nodes or edges in common).

Figure 1.1: Terms in two maps may not be identical due to variations in language. The alignment
problem consists of mapping the terms of students onto expert terms, thus allowing for network
comparison.
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Figure 1.2: The software by Giabbanelli and Tawfik allows one to visualize one student network (a)
and the expert network (b). The alignment is performed by manually selecting the corresponding
expert term in a drop-down menu (c).
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1.1 Contributions

The focus of this thesis is to efficiently compare mental representations in the form of causal

networks, with applications to the assessment of ill-structured problem (ISP) solving in an educa-

tional context. This goal will be accomplished through the completion of three specific aims:

1. Leverage human-computer interaction (HCI) to align expert and students’ terms efficiently

(in terms of human efforts) and informatively (in terms of the insight for learning generated

through the alignment process).

2. Develop a collaborative approach to aligning terms through an online platform and the use

of information retrieval techniques.

3. Perform comprehensive network comparisons, going beyond simple metrics.

By accomplishing these aims, we will make it possible for educators to assess mental represen-

tations in a systematic and scalable manner. The short-term benefits will be the release of online

open-access software with which educators can upload and compare students’ maps with expert

maps. In the long term (i.e., beyond the scope of the present work), this thesis will contribute to

the application of computational methods in the difficult problem of comparing mental representa-

tions, which is found in many fields beyond only educational assessment. For instance, identifying

the extent to which individuals think ’similarly’ is essential for setting up groups in randomized

controlled trials (RCTs), where the distribution of perspectives should be similar at baseline across

groups [30]. Similarly, knowing the ’distance’ between mental representations is important for

contrasting the perspectives of stakeholders in problems requiring participative decision-making,

such as ecological management [36, 41].
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1.2 Outline

This thesis combines several fields: human-computer interaction (HCI), information retrieval

(IR), and network science. The specific techniques within each field are briefly described in the

context of the specific aims for which they are used. Network science and studies on mental rep-

resentation constitute the common thread which guides this work, given that we approach mental

representations in the form of networks (Figure 1.1) rather than in narrative forms (e.g., essays)

or through live discussions. The first aim uses HCI to improve the alignment of terms (i.e., map-

ping between network nodes). Separately, the second aim uses IR, and specifically recommender

systems, to suggest the best alignments. Upon completion of the first two aims, the last one then

performs comprehensive network comparisons.

1.2.1 Leverage HCI to align terms efficiently and informatively

Our aim is to design interactive visualizations that allow humans to efficiently and informa-

tively align terms. This translates to two specific criteria. First, usability should support each

contributor in efficiently aligning terms, through a minimal number of clicks and a low cognitive

load. Second, the alignment itself should be informative: the structure of the alignment as shown

in Figure 1.1 can hold insightful information, for instance when seeing a one-to-one mapping

compared to a many-to-one (i.e., when several student terms map onto the same expert term).

Interactive visualizations can help navigate datasets with many combinations [29], which means:

In many disciplines, data and model scenarios are becoming multifaceted: data are of-

ten spatiotemporal and multivariate; they stem from different data sources (multimodal

data), from multiple simulation runs (multirun/ensemble data), or from multiphysics sim-
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Figure 1.3: Proposed interactive visualization showing all alignments (a), and a user clicking on a
specific student term (b).

ulations of interacting phenomena (multimodel data resulting from coupled simulation

models). [74]

But even readily existing solutions are underutilized when it comes to text [28]. Here, we

propose to treat the expert’s and students’ terms as two dimensions and use interactive multi-

tiered visualizations (also used by Starlight [101], Jigsaw [119], and Eduvis [70]) to see and edit

matches. The structure of the matches becomes apparent (Figure 1.3a vs. Figure 1.2c), and also

shows whether matches are confirmed by users (shown in blue connections) or suggested (shown in

red connections). Suggestions leverage the online collaborative environment to highlight whether

matches have occurred in other assignments (frequency shown by hue; Figure 1.3b) or not (greyed

out). A match requires at least two clicks to set the source and endpoint. Our proposed visualization

meets this minimum, as users only click on students’ terms and then the corresponding expert’s

term to set a match.

In sum, we will use interactive multi-tiered visualizations to (i) minimize the number of clicks

to perform alignments, and (ii) offer insight about the alignment as it progresses.
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1.2.2 Develop a collaborative approach to aligning terms

Giabbanelli and Tawfik previously pointed out that an alignment (Figure 1.2) can be used not

only to make two networks comparable, but also to speed up future alignment processes [32]. The

intuition is that if two terms have been found equivalent previously, then the computer may already

align them and simply flag this alignment as requiring confirmation (Figure 1.3; red links) rather

than asking users to do it all again. In other words,

The more educators assess causal maps, and the more it generates terminologies as by-

product of the analysis; therefore, future analyses become increasingly automatized. [32]

However, previous equivalences may have been established in different contexts (e.g., “formal”

and “mathematical notation” may be equivalent in one context, but “formal” and “fancy reception”

may be equivalent in another), and multiple equivalences may exist. The computer thus has to

identify the best candidate, that is, recommend the most likely match.

We will thus use the technique of recommender systems, which is widely used in contexts

such as e-commerce where recommended purchases leverage the patterns of previous customers’

purchases [59]. Recommender systems fall into two broad categories [95]: collaborative filtering

(focusing on similarities between users) and content-based (focusing on properties of the items).

Most modern recommender systems are hybrids, combining these ideas. We will thus use a hybrid

system.

1.2.3 Perform comprehensive network comparisons

A graph g is defined as set of vertices (V) and edges (E) and vertices and edge labeling functions

u and v respectively. Graph comparison is a difficult problem for which there exist two broad



8

categories of approaches: exact graph matching, and inexact graph matching (also referred as

error-tolerant graph matching) [129].

Exact graph matching algorithms aim to find whether two graphs are partially or entirely iden-

tical in terms of structure and labels. Being identical means that there exists a bijective function

called an isomorphism [24] that maps one graph to the other while preserving adjacencies (e.g., if

two nodes shared a link in graph A, then their corresponding nodes in graph B should also share a

link). Formally, two graphs are said to be isomorphic if there exists an isomorphism between them

and it is denoted by g1 ∼= g2. Riesen highlighted the difficulty of isomorphisms:

Subgraph isomorphism is an NP-complete problem and is a harder problem than graph

isomorphism, as we have to not only check whether a permutation of g1 is identical to

g2, but also decide whether g1 is isomorphic to any of the subgraphs of g2 with equal

size as g1. [96]

Inexact graph matching algorithms aim at finding partial isomorphisms. Several algorithms

have been proposed in this category. A simple approach could be to use a depth-first search, which

traverses a graph starting at a root node. If traversals in two graphs yield similar sequences of

nodes, then we could conclude that the graphs might be similar. The space complexity of depth-

first search is O(|V|) in the worst case and time complexity of O(|V| + |E|) [13] when implemented

using an adjacency list. While this solution is computationally cheap, it produces false positives

(two traversals may be identical but the underlying graphs aren’t) as well as false negatives (two

traversals may be different not because the graphs are different but because they use different

starting points).

Inexact graph matching algorithms can be applied to scenarios where it is possible that labels

for vertices or edges differ but are still considered equivalent, or that there are some extra or

missing vertices or edges but the graph structures are not substantially different. That is, inexact

graph matching can be applied to more problems than exact graph matching (which is a special
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case of inexact matching). In this thesis, we will use inexact graph matching techniques to compare

the causal maps of students and experts.

Intuitively, one approach to inexact graph matching is to transform the source graph into the

target graph in steps, where errors at each step incur a ‘penalty’, and the total cost of the transfor-

mation consists of the cumulative penalties incurred (Figure 1.4). A straightforward transformation

would be to delete all nodes of the source graph, then add all nodes of the target graphs, and then

the edges. That is, a graph can always be transformed into another. Thus, the objective is not to

find just any transformation, but to find one with low cost, although not absolutely minimal (as it

then would become an exact graph matching). One method using this approach is to use the Graph

Edit Distance (GED) [97], which itself can be calculated using a variety of algorithms [100]. We

will review and contrast options, and then select one approach to using the GED in this thesis.

Figure 1.4: A possible edit path for transforming graph g1 to g2. Graph g1 is transformed to g2.

I will try other approaches like graph kernels and graph embeddings. An illustration for graph

kernels is shown in Figure 1.5. It is a similarity function between the given graphs. The function

is computable in polynomial time. Several methods exist to create graph kernels, as it is up to

the user to identify what relevant ‘features’ (or ‘kernels’) need to be extracted. A graph kernel

between two given graphs can be found with a random walk kernel, which conceptually performs

random walks on the given graphs simultaneously, then counts the number of paths produced by

both walks. This is equivalent to doing random walks on the direct product of the pair of graphs,
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and thus a kernel can be derived that can be efficiently computed [130]. Another approach can

be to get the number of cyclic patterns in the structure: for instance, a molecular structure can be

represented as cycles (C1 6= C2) and this structure can be compared with other structures only in

terms of cycles (Figure 1.5). Other approaches like graph kernels and graph embeddings can be

used to contrast two given graphs. An illustration for the graph kernel is shown in Figure 1.5. It is

a similarity function between given graphs. The function is computable in polynomial time.

Figure 1.5: Cyclic molecular graph and its relevant cycle hypergraph.

In graph embedding we represent a graph based on its features, for example, number of nodes

(n), number of edges (v) or average degree, as a point in a suitable vector space, as illustrated in

Figure 1.6. Interesting embeddings are characterized by the fact that they preserve the similarity

of the graphs: the more two graphs are similar, the closer the corresponding points are in the target

vector space. Although seminal works in this area were already present in earlier literature, it is in

the last decade that these techniques have gained popularity in the pattern recognition community.
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Figure 1.6: Embedding of a graph using the number of nodes, number of edges, and average
degree.



CHAPTER 2

BACKGROUND: ADVANTAGES AND CHALLENGES OF SOFTWARE

SOLUTIONS FOR THE STRUCTURAL ASSESSMENT OF

KNOWLEDGE

The field of research concerned with examining and representing the way learners organize

their knowledge of a subject is called structural assessment of knowledge (SAK) [128]. When

new information is acquired, it is incorporated into the learner’s existing body of knowledge, and

associations with existing knowledge are formed [128]. These associations may be correct, in-

correct, or partially correct at any given time during the learning process. SAK aims to provide

a procedure for representing the concepts and relationships surrounding a topic of interest using

various methods of knowledge representation, as well as methods for evaluating the correctness of

those representations [128]. The specific branch of SAK that we focus on in this paper is based on

cognitive maps.

Cognitive maps (also called concept maps) consist of a set of concepts, as well as a set of re-

lationships linking these concepts. They are typically represented using node and link diagrams,

with nodes representing individual concepts, and links representing the relationship connecting

two concepts [89]. Specialized variations of cognitive maps have been created for many different

purposes, typically by constraining the types of relationships allowed between nodes, or by im-

posing a more rigid hierarchical structure on the map [128]. These constraints can simplify the

process of evaluating or comparing maps [87], provide a more structured process for creating new

maps [128], or limit the scope of the mapping activity for pedagogical reasons [49].
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The most general form of cognitive map consists of a set of concepts connected with lines

representing specific relationships identified by the individual creating the map. This type of map

was initially developed by Novak and Gowin in the 1980s [89], and provides the learner with the

most flexibility in representing their own perception of the material, since no fixed structure is

dictated, and no restriction is placed on the available relationships [49]. While useful as a learning

tool, these maps can be difficult to evaluate, so additional constraints are imposed to simplify the

resulting maps for the instructors or the software evaluating them [87].

Knowledge maps and mind maps restrict the allowed structures in two different ways, with

knowledge maps restricting the set of allowed relationships, and mind maps constraining the over-

all structure into a hierarchical format centered on a single concept. Pathfinder networks are created

by ranking the degree of relationship between each pair of concepts, and then applying a weight-

ing algorithm to determine which of these relationships should be included [128]. Finally, causal

maps require that all relationships be directed (i.e., from one concept to another, rather than bidi-

rectional), and limit the allowed relationships to only directed positive and negative causation, with

positive causation indicating that an increase in the strength of one concept leads to an increase

in the strength of the related concept, and negative causation indicating that an increase in one

concept leads to a decrease in the other.

With any of the types of structured mentioned above, additional restrictions can be placed on

the form of the maps created by the instructors using them to simplify the work to be performed by

either the students or the instructor [128]. Ho et al. suggest that having students fill in a partially

constructed concept map can reduce the cognitive load of the creation process, allowing students to

focus on the concepts being learned rather than the process being used [49]. Various studies state

that restricting the available concepts in a given map can make them easier to evaluate [49, 87, 134].

One popular use of concept maps in SAK is as an assessment tool. Trumpower and Vanapalli

refer to this as “SAK of Learning” in contrast to the other types of SAK which will be described

later. In this context, concept maps would be created or completed in place of a more traditional
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exam or essay at the end of an instructional topic to evaluate how well students had mastered the

material [128]. Because concept maps are being used in place of a more traditional assessment

instrument, it is critically important that the method of evaluating maps is reliable and accurately

indicates the degree of mastery attained [132]. This can be especially difficult because concept

maps by their very nature represent an individual view of a particular subject area [87]. Instructors

can also be resistant to the use of concept maps as assessment tools because they perceive them

to be time-consuming to evaluate, and students because they are time-consuming to produce [49].

Whether this is true in practice is not certain. McClure, Sonak, and Suen did a study on evaluation

of concept maps by hand, using six different methods, both with and without a referent map for

comparison, and found that none of the methods required more than 5 minutes per map on aver-

age, which they judged to be similar to the time required to evaluate an essay, based on personal

experience [87].

To be truly usable as an assessment tool, it would be preferable to have a reliable, automated

method of evaluating concept maps [134]. Most previous research has focused on automatic evalu-

ation of constrained concept maps. The Pathfinder software generates both configural and common

similarity scores to show how closely a student map matches a referent, but this is, of course, lim-

ited only to Pathfinder networks [128]. Both of these metrics show how closely the relationships

defined by the student match the relationships present in a referent map. Wu et al. performed a

study evaluating the use of automatic scoring and feedback generation using CMapTools, a popu-

lar concept mapping application. In this case, it was the set of terms that was constrained, so that

meaningful comparisons could be made between maps [134]. Another common technique used in

the evaluation of concept maps is the use of rubrics defined for each concept mapping task. Using

rubrics has the advantage that different, context-dependent features can be identified as important

in specific assessments. Rubric-based evaluation is, however, primarily a manual task, since the

judgement of whether a student has satisfied each item is highly subjective [87, 128].



15

Concept maps can also be used as a pedagogical tool rather than an assessment tool. Trumpower

and Vanapalli make a distinction between “SAK as Learning” and “SAK for Learning”, where the

former utilizes concept mapping only as an organizational tool, and the latter positions concept

maps as artifacts to be assessed in order to guide students’ learning process. In either case, the

concept map is not used to determine the extent of a student’s learning, but rather as a part of the

learning process. In this sense, concept maps are intended to aid the student in contextualizing new

information within their existing body of knowledge [128]. When concept maps are used in this

way, students are better able to recall and apply the knowledge gained [49, 87].

The effectiveness of this technique, however, is limited by the ability of students to easily and

quickly create concept maps. One of the major hurdles to adoption is that creating concept maps

by hand is a difficult process, since it is easy for students to run out of room or allow aesthetic

considerations to influence their maps [134]. Techniques have been suggested to simplify this

process (e.g., using post-it notes for concepts and moving them around a whiteboard), but the

more common solution is to use computer-based concept mapping tools [128]. Weinerth et al. list

several advantages of computer-based concept mapping over pencil-and-paper, and the item at the

top of the list is the ease of creating and modifying maps [132].

In addition to the benefits to be gained simply by constructing concept maps as part of the

learning process (“SAK as Learning”), the creation and modification of concept maps throughout

the learning process can provide instructors with insight into the current thinking of their stu-

dents, allowing for more rapid correction of misconceptions and reiteration of poorly-understood

concepts (“SAK for Learning”) [128]. Weinerth et al., Hu et al., and Ho et al. all make men-

tion of the importance of feedback in the learning process as well [49, 132, 134]. It is possible

to simply highlight differences between the student map and the expert map, but this requires a

concentrated effort on the part of the student to reflect on and examine the reasoning behind the

displayed differences. A more effective method is to provide specific targeted feedback for each

student map [128]. There is some research into automatic generation of feedback based on ex-
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pert maps [134], but for the most part, this requires detailed work to associate specific feedback

with each component of the map [87, 132]. Wu et al. concluded that in their study the use of the

“evaluation-feedback-modification cycle... significantly improved the learning achievement of the

students” [134]. Trumpower and Vanapalli similarly concluded that students who used concept

maps as a learning tool performed better in traditional assessment tasks, and when surveyed, found

them to be beneficial [128]. The studies we examined typically found concept mapping as an ed-

ucational tool to be beneficial, but there is a significant caveat to the use of computer-based tools

for the construction of concept maps.

The construction of concept maps is a complex task, since it aims to represent a student’s

understanding of many related concepts, so it is critical that the software used not increase the

complexity of this task [132]. This is especially important in the area of assessment (i.e., SAK of

Learning) since an assessment instrument cannot effectively measure comprehension of a subject

area if it is instead measuring competency with the instrument itself. Despite the importance of

this area, Weinerth et al. found that very few papers addressing assessment using concept maps

make any mention of software usability, either directly or indirectly. In the area of assessment, the

International Test Commission has requested that usability of assessment instruments be included

in all assessment research [132]. However, in the area of pedagogy, these usability findings could

be considered more optimistically. Given that poor usability can only decrease the utility of concept

mapping software as a pedagogical tool, the positive findings of the papers we examined [49, 87,

106, 134] could only be improved with a renewed focus on software usability in this area.



CHAPTER 3

AN ONLINE ENVIRONMENT TO COMPARE STUDENTS’ AND

EXPERT SOLUTIONS TO ILL-STRUCTURED PROBLEMS

While comparing a student’s map to an expert’s map can assist with the evaluation, this is a

challenging process, in part due to variations in language, resulting in the use of different terms

for the same construct. The first step of the comparison is to address these variations by aligning

as many of the students’ terms with their equivalent in the expert’s map. We present the design

and implementation of software to assist with the alignment task. The software improves on pre-

vious work by optimizing usability (e.g., minimizing the number of clicks to create an alignment)

and by leveraging previous alignments to recommend new ones. In addition, alignments can be

done collaboratively, as our system is available online: one instructor can invite others to edit or

see the alignments. Further improvements to this system may be achieved using content-based

recommender systems or natural language processing. The alignment is used as preprocessing to

perform the task of comparing maps.

This chapter was published in the following article [38]:

• Vishrant K. Gupta, Philippe J. Giabbanelli, Andrew A. Tawfik. An online environment

to compare students’ and expert solutions to ill-structured problems. In Proceedings of

the Human-Computer Interaction Conference (HCI 2018), to appear, 2018.

My contributions consisted of developing the software and defining its architecture, database,

implementing and testing it.
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3.1 Introduction

Problems in classroom contexts are often well-structured; that is, they have predefined an-

swers. Assessing a student’s work thus consists of contrasting the student’s answer to the set of

valid answers. However, the problems faced by practitioners are frequently ill-structured prob-

lems (ISPs), as they admit a much broader set of solutions, which are often contextual [67]. For

instance, we may need to identify a solution to improve employee morale. A broad set of solutions

exist, including improving shared governance, pay raises, or additional benefits. These solutions

are context-dependent, as the specific legal and economic constraints of a workplace may limit

the applicability or shape the effects of a solution. Evaluating the ramifications of each possible

solution thus requires a deep understanding of the overall system, that is, an appreciation of the

relevant variables and their interrelationships. To solve an ISP, student must first form a mental

representation of the system by integrating the causal mechanisms of relevant variables (problem

representation). Then they can evaluate the consequences of possible actions based on this mental

representation (solution generation).

Although theorists suggest ISPs in the classroom as one way to better support problem-solving

skills, instructors lack scalable and reliable technological solutions to assess a student’s solution

in the form of a mental model. The situation is further complicated as students differ not only in

their understanding, but can vary tremendously in the terminology that they use. This assessment

challenge limits the use of ISPs in the classroom [111], thus precluding learning outcomes and

problem-solving skills for students [84].

One way to assess student learning is through the evaluation of their mental models. A mental

representation can be externalized in the form of a causal network, which articulates antecedents

and consequents (Figure 1.1a). Many software tools allow students to generate causal networks

(e.g., Coggle.it). As causal network generation tools have emerged, assessment tools are also

Coggle.it
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becoming of interest to educators [32, 56]. Given the open-ended and context-sensitive nature of

ISPs, a student’s causal map can be assessed by contrasting it with an expert’s map. Indeed, studies

on problem solving have revealed that expert and novice understanding differ in several ways (e.g.,

conditional rules [48] and multiple causal paths [58]). While this provides a clear rationale to

contrast causal networks, a perfect comparison is computationally infeasible. For instance, finding

the largest part of a student’s network that matches the expert’s cannot currently be accomplished

in a reasonable amount of time, as this is known in computer science as subgraph isomorphism

and is an NP-complete problem [8]. The comparison becomes feasible when the networks have

unique concept names [16], but terms in the students’ networks are unlikely to be exactly the same

as the expert’s (Figure 1.1).

To assist instructors in assessing students’ solutions to ISPs, we recently developed software

which mainly differs from other solutions through its focus on alignments between the terms used

by a student and the expert (Figure 1.2) [32]. The software, Incremental Thesaurus for Assessing

Causal Maps (ITACM), allows instructors to align each term of a student’s map with a term in the

expert’s map. This is critical from a learning perspective to address the variability in terminology

that students use. Alignments are saved on the instructor’s computer, and are re-used to expedite the

alignment of the next student’s map. For example, if the first student had a term “increased salaries”

which was aligned to the expert’s “pay raises”, and the next student also has the term “increased

salaries”, then it will be automatically aligned with “pay raises”. In other words, the process of

aligning maps gradually generates a ‘thesaurus’ which simplifies future alignments. The process

nonetheless had three shortcomings. First, the process creates high cognitive demands and relies

on extensive human-computer interaction: for each term of the student’s map, instructors must

scroll through the long list of all of the experts’ terms to find if any constitutes a good alignment.

Second, an instructor would not benefit from the thesauri created by colleagues in the same field,

unless they knew of each other and exchanged thesauri (e.g., by email). Third, even in the same

field, there may be multiple valid alignments.
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In this chapter, we present a new version of the software which makes the alignment process

efficient and informative by addressing all three shortcomings as follows:

• We use interactive visualizations to support each instructor in quickly aligning terms by

minimizing the of clicks.

• We create an online environment in which assignments can be shared, so that alignments

become a collaborative effort.

• We make it possible to leverage an instructor’s community of practice to recommend can-

didate alignments (based on the alignments of others and their specific educational fields),

which reduces the need to scan through a long list of candidates.

In section 3.2.1, we briefly highlight the importance of assessment in education, and the types

of computational approaches that have been explored. Section 3.3 introduces the key functional-

ities of our software and details its architecture. As interactive visualizations are essential in our

approach, section 3.4 shows three classical examples that can be used to align terms. We focus

on our new alignment process, by explaining the interactive visualization and the recommendation

process. Finally, section 3.5 discusses the implications of this work for assessing ill-structured

problems in education, as well as benefits to other fields. To support transparency and reuse, read-

ers can connect to https://osf.io/jr42t/ and obtain the source code, installation manual,

and ready-to-use software.

https://osf.io/jr42t/
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3.2 Background

3.2.1 Computational approaches to assessment

Knowing the trajectory of a student or automatically analyzing a submission are essential tasks

to provide students with appropriate assessment and feedback. Consider that the instructor has a

thoroughly researched mental model (‘expert map’), and that a handful of students have submitted

their mental models (‘student maps’) by drawing on paper or in a computerized format using

Coggle.it. In this case, the instructor may spend one or two hours manually assessing the

students’ maps, by comparing them with the expert map based on a rubric (e.g., 1 points for every

equivalent causal connection found). In contrast, a large volume would rule out the possibility of

performing a manual assessment.

Computational approaches have thus emerged to offer solutions in various challenges related

to assessment, from the broadly defined notion of “is the student on a path towards success” to our

more specific challenge of “how can I evaluate the mental model of a student”. The application

of these approaches is most visible in Massive Open Online Courses (MOOCs), where assessing

the learning experience of a large number of participants is an ongoing challenge [117]. MOOCs

have extremely high attrition rates [78], with several studies finding that less than 10% of students

completed a MOOC [43, 71].

Regression is employed in many statistically-oriented studies. For instance, Sher has employed

stepwise regressions to understand what variables contribute to student learning and satisfaction.

After controlling for variables such as age, gender, or Internet experience, he found that interactions

with students and instructors were significant contributors [112]. Our focus is on computational

rather than statistical methods. We do not intend to provide a survey of the field, but rather to

highlight its breadth and situate our contribution. For more comprehensive surveys, we instead

Coggle.it


22

refer the reader to Romero and Ventura’s 2010 review on educational data mining [102], which

articulates over three hundred references, or to the 2016 overview of practices in the field [109].

Computational approaches are particularly popular for building predictive models, which en-

tails methods such as classification. Classification is a supervised machine learning method.

Specifically, it consists of providing an algorithm with a training set of data containing char-

acteristics and outcome(s) of interest (e.g., students’ prior experience with online learning and

whether they succeed or not), from which a model is automatically inferred to predict the outcome

given only the characteristics (e.g., given a student’s prevous experience, will he/she succeed?). A

plethora of studies have been conducted for classification in MOOCs [2, 83, 103]. For instance,

He et al. used classifiers for predicting whether a student was going to complete a course [39].

A wide variety of algorithms have been used for classification. As the best algorithm may not be

known a priori, studies can use and contrast a variety of algorithms such as decision trees, random

forests [60], neural networks, support vector machines [73], or even new algorithms developed

specifically to learn from behavioral data [94].

While classification often (but not necessarily) examines the features of a student in isolation,

other techniques draw our attention to students as part of a community of learning. In contrast with

the supervised approach of classification, which uses outcomes to guide the search for patterns

in the data, clustering is an unsupervised method which looks for similarities between groups

based on features. Clustering has been applied to many studies in MOOC research. For example,

Kizilcec and colleagues identified groups of students based on course engagement in the Coursera

platform [77], and Ferguson & Clow later took this analysis to the FutureLearn platform [23]. The

students are not necessarily the object of clustering, as shown by the study of Ezen-Can et al. who

instead clustered forum posts [22].

Similarly to cluster analysis, network analysis provides tools to study students as part of a

community. While cluster analysis may see two students who have never interacted as part of

the same group based on features and learning trajectories, network analysis explores patterns of
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interactions. Contemporary learning theory contends that knowledge is constructed through inter-

actions [65, 118]. Several studies have analyzed the structure of interactions, that is, who a student

interacts with and when. Studies have found that the dropout rate is reflected in the structure of

the network formed from students’ interactions as it becomes sparser and increasingly fragmented

over time [33, 34]. Our previous analysis also found that interactions were heavily dependent on

a handful of highly-engaged students [124]. The centrality (i.e., structural importance of a student

within the network) has also been investigated, with mixed results [17, 62]. To analyze who a

student interacts with, studies can examine online forums or chats. These offer textual informa-

tion, which can be mined to assess how phases of learning (e.g., integrating others’ perspectives,

clarifying questions, or articulating one’s own thoughts) relate to interactions [123].

The concept of a network has broad applicability, as it is not limited to social networks formed

by interactions between students or between students and instructors. For instance, Dascalu and

colleagues took a network approach to analyzing the structure of online discourses in the Reader-

Bench framework [14]. In another context, Hecking et al. examined how students accessed online

resources, which was represented as a bipartite student-resource network [40]. Our focus is on

the use of a network to assess a student’s work, which is a necessity for instructors as well as the

students themselves. As recently noted by Schumacher and Ifenthaler, students in online learn-

ing environments expect to be given tools for self-assessments, among other analytical features,

to self-regulate their learning [108]. The thematic working group at the 2015 EDUsummIT also

emphasized the need for instructors to provide formative assessments and feedback to enhance

student learning [117]. The approach of comparing a student’s map with an expert’s map, which

is central to this work, was particularly underscored by the working group which highlighted the

HIMATT and AKOVIA tools [56]:

The most promising recent advances in... formative assessment for complex learning

tasks involve a series of research efforts... consolidated in Highly Integrated Model
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Assessment Tools and Technology (HIMATT). HIMATT provides a learner with a

problem situation and then prompts the learner to indicate (in the form of text or an an-

notated graph) the key factors and their relationships involved in addressing the prob-

lem. This problem conceptualization can be compared to an expert conceptualization

or reference model and analysed to indicate things for the learner to consider. [117]

3.3 Software functionalities and architecture

3.3.1 Overview

When detailing interactions with our software, we refer to instructors as users. As in any

online application, the full application does not reside entirely on the user’s side. Rather, the user

has a lightweight graphical application (a client) to request services, such as ‘create an assignment’

or ‘recommend terms to align’, and these services are accomplished through a university-hosted

computer (the server). A user thus starts by downloading and running the client.1 For the first use,

the user needs to sign up by providing information including a username, email2 and password,

and subject taught (Figure 3.1). The subject is important, as it allows contextualizing language

when generating recommendations for alignments from the system. Immediately after signing up,

the user can log in.

Once logged in, the user can create a new assignment to host a set of maps. For instance, if the

user has an in-class activity where students produce maps, then an assignment would be created
1The client communicates with the server via the http protocol on port 8080, which is commonly used to offer web

services. Our application thus requires a single, common port to be open on the server-side. Note that port 80 can
also be used for http. However, it is common for this port to be already used by an application, thus we use 8080 as a
default.

2While we check that the email is entered in a valid format, we do not send a confirmation email to register. A
university-hosted computer with the ability to act as an email server (even for very specific emails) poses greater
security risks. To simplify the deployment of our software, there is thus no need to install an email server or to obtain
security clearance for this purpose.
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Figure 3.1: Signing up to create an account.

to indicate that these maps all originate from the same activity. All fields are sortable. To help

instructors in further organizing their content, we thus have optional (sortable) fields such as the

number of points and the due date (Figure 3.2).

In order to support interaction with their community of practice, users can collaborate both

directly and indirectly. An indirect collaboration occurs when a user receives a recommendation

for an alignment based on the work of many other anonymous users. A direct collaboration occurs

when a user explicitly wishes to work with a specific set of other users for a particular assign-
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ment. Upon the creation or editing of an assignment, a user can specify who to share it with

by entering their emails one after the other. They can contribute through the maps, for instance

by visualizing or creating alignments. This allows them to create communities of practice, thus

supporting instructors through the difficult task of preparing the implementation of ill-structured

problems. Permissions can be revoked by clicking on the button next to a user with whom the

assignment was previously shared. After sharing, the original user who created the assignment

remains its owner. In contrast, users with whom the assignment was shared are not able to edit the

assignments’ properties (including sharing) or to delete it.

Figure 3.2: Creation of a new assignment (foreground), which allows adding and revoking sharing
permissions with other users. The user has three assignments (background), currently sorted by
due date.
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Clicking on the analysis button (available both for the users’ owned and shared assignments)

opens a new window where each analytical task is hosted in a separate tab. Regardless of what

tab is activated, a user can add student maps by uploading them onto the server, or remove them.

Similarly, the one expert map can be added or removed. Note that only the maps are uploaded:

we do not store confidential meta-data such as the author of each map. This would complicate the

sharing mechanism, as a user may elect to share the students’ work but hide the students’ identity.

If a user chooses to disclose the authors for each map, then the map files can simply be named after

their authors.

The first tab, which opens by default, is devoted to the alignment process (Figure 3.3). The

second tab allows interactively exploring and contrasting two maps, displayed using node-diagram

representation (Figure 3.4). That is, each variable in a map is represented as a labeled circle (node),

and the fact that a factor A is a logical antecedent for B is represented as a directional arrow from

A to B (edge).

3.3.2 Architecture and technologies

From an educational or application perspective, we refer to the work of each student as a

‘map’. From an analytical perspective, the same notion is generally named a ‘network’, whereas

in computer science it may be called a ‘graph’ (particularly when the focus is on storing and

accessing its information). Given the focus on implementation in this sub-section, we will use the

term ‘graph’.

As detailed in the previous sub-section, our software is built on a client-server model. The

technologies involved in the client are summarized in Table 3.1. The client is programmed in Java.

When the client selects a map to upload, we attempt to convert it into a graph object on the client

side using the Jung library. If this succeeds, then we conclude that the file is properly formatted,



28

Figure 3.3: Alignment of terms from a student (left) and the expert (right).

and we allow the client to send it to the server. The client uses the GraphStream library to

visualize the alignment, and D3 together with D3plus to display the graph in the visualization tab

(Figure 3.4).

The server is rooted in Spring’s web Model–View–Controller (MVC) framework. The architec-

ture is shown in Figure 3.6. In our application, developing using the MVC framework leads us to

need a combination of multiple technologies, which is reflected in the extensive list of server-side

libraries (Table 3.2). Overall, the controller layer takes in requests from the client, handles them,

and returns a response. Specifically, when a request comes in from a user, the dispatcher hands

it over to the handler, which inspects and processes the request by sending it to the next layer

(a service). The service will perform the request and return the answer to the controller, which

sends it back to the user. Apart from signing up, all other services require authentication to access

resources. Thus requests are further sent to the authentication manager within the authentication
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Figure 3.4: The visualization shows what factors have been aligned, and which ones are important
in number of connections using betweenness centrality.

layer. The authentication manager produces an authentication token for valid credentials. In line

with the standard RFC 7519, we have used JSON Web Tokens. The Spring Security Framework

ensures that each authenticated request runs in a ThreadLocal, which means that it can only be

read and written by the same thread.

The web service provides interoperability between systems. The Representational State Trans-

fer (REST) architecture is a commonly used technology for web applications, as it is lightweight

and scalable. Services built on a REST architecture are known as RESTful. We used Spring to

implement a RESTful web service.

Finally, the last layer contains the databases. We use two different databases, a Relational

DataBase Management System (RDBMS) based on the open source MySQL (the second most

widely used database engine in the world), and a graph database management system (Graph

DBMS) based on Neo4J (the most popular graph DBMS as of February 2018 per
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Figure 3.5: Interactive visualization of connected concepts implemented using the D3Plus
JavaScript framework.

Figure 3.6: Model, View, Controller (MVC) based N-tier system architecture.
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Table 3.1: Client side architecture

Architecture
layer Presentation

Components Desktop client

Technologies

D3 3.5.15
D3plus 1.9.8
Java 1.8
Jung 2.0.1
GraphStream 1.3

https://db-engines.com/en/ranking). The MySQL database records all individual

characteristics. That is, we have the characteristics of each assignment, each user, each file, and

the alignment made by each user for each file within each assignment. In contrast, the Neo4J

database records only aggregate characteristics consisting of the number of times an alignment has

been endorsed by users of a specific type.

There are two broad approaches to interacting with a MySQL database: we can either write

SQL code or automatically transform JavaBeans (i.e., classes encapsulating multiple Java objects)

into database operations. While solutions such as the Java Database Connectivity API (JDBC)

allow one to communicate using SQL code, its behavior depends on the choice of an RDBMS,

which makes it difficult to migrate the application from one database system to another. In contrast,

an automatic transformation removes the dependency on a database-specific query language. We

thus opted to use the Hibernate Object/Relational Mapping (ORM) framework, which generates

queries (e.g., column mapping and joins) based on Java classes and table configurations provided

through the Hibernate framework annotations. Similarly to Hibernate ORM, we transform Java

classes to interact with the Neo4J database using the Neo4J Object-Graph mapping library.3

3Hibernate could be used for both SQL and Neo4J, with Hibernate ORM and Hibernate OGM respectively. Opt-
ing for this solution would require changes in the overall architecture, as it would start to resemble a microservice
architecture.

https://db-engines.com/en/ranking
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Table 3.2: Server side architecture.

Architecture
layer Controller Authentication Service Persistent

Components Dispatcher
Handler mapping

Authentication
manager. Uses:
- user repository
- user service

Web service
SQL Database
NoSQL Database

Technologies
Spring boot 1.5.9
Spring core, MVC,
and AOP 4.3.13

Spring boot 1.5.9
Spring security
& Web 4.2.3
JSON Web Token
0.6.0

Java 1.8
Spring web 4.3.13
Spring boot 1.5.9

Spring boot 1.5.9
Hibernate 5.0.12
MySQL 5.7.14
Neo4J Java 3.1.4
Neo4J DB 3.2.3

3.3.3 MySQL database

The MySQL database is used throughout the application to create assignments, add files, and

directly collaborate with other users. We thus detail its schema as part of the general software

architecture. In contrast, the graph database is used only for alignments, and is discussed in sec-

tion 3.4.2. Information in SQL is structured in relational tables, where each row of a table has a

unique identifier (known as the ‘primary key’). These identifiers are automatically set (i.e., incre-

mented) by the MySQL database and are not discussed below. Similarly, an entry may include an

identifier from another table (e.g., to know which user owns an assignment). These ‘foreign keys’

are represented as pink diamonds in Figure 3.7 and will also be omitted from the discussion.

The MySQL database involves six tables (Figure 3.7). The content of the Appuser table was

provided by the user when signing up (Figure 3.1), except for the last field (‘authorities’). This field

is required by Spring Security, and is systematically set to ROLE USER in our application. Each

user can create many assignments. All of the information in the Assignment table is provided

through the edit window (Figure 3.2). Sharing is a special case as it is formed of a list of users

rather than of a single value (e.g., single due date, single class name). Rather than storing a list

of values within a single cell of the table, best practices in database normalization encourage the
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creation of a distinct table. This is further complicated by the fact that some of the users with whom

we wish to share (e.g., user2@niu.edu in Figure 3.2) may already exist and can be given immediate

access to an assignment, while others may not have registered yet. We resolve this situation using

two tables: Shared for users receiving immediate access, and Invited users for those who

will get access if they choose to register.

The Files table tracks all the files used in a given assignment. It records the name of the file

as it was uploaded on the server, whether the file is a student or expert map, and it binds it to a

JSON file. The JSON format is used as our file format to store maps. Our experiments showed that

it leads to better loading times for users compared to keeping it in the Coggle.it format.

The User Alignment table tracks how a specified user has aligned the content of specific

files in a specific assignment. When a user opens an assignment, this table is used to display the

alignment that he/she has made previously. If the user wishes to get recommendations for new

alignments, then we will query the Neo4J database. If the user attempts to update alignments, we

first check in the User Alignment data that the alignments are indeed different, and we only

then update the Neo4J database. Since the Neo4J database only tracks aggregate alignments and

not individual users, allowing one user to update alignments n times without checking that they are

different would be erroneously recorded in Neo4J as alignments produced by n users, thus biasing

recommendations.

3.4 Alignment process

3.4.1 Visualization

To create an alignment in the first version of ITACM (Figure 1.2), users had to (i) click on

a drop-down menu to open, (ii) scroll through the list, (iii) click on the term to align with, and

in general (iv) click to close the menu since it hides the access to the next menu. One of our

Coggle.it
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contributions is to use interactive visualizations that minimize the number of clicks necessary to

align terms. Our visualization is similar to Jigsaw (section 3.2), although Jigsaw was made to

display connections found in a collection of documents and not to create these connections.

An alignment is defined by a student term and an expert term: a minimum of two items thus

have to be selected. Our new visualization achieves this minimum of two clicks. The user clicks

on a student term on the left (e.g., ‘more american troop casualties’ for the student in Figure 3.3),

and then clicks on the expert term to align. Once the user has made the alignment, it appears in

blue. To move to the next alignment, the user again clicks on a student term.

To minimize the cognitive load when performing an alignment, it is important to also minimize

the time spent scanning the list of possible candidate terms on the expert side. That is, given a

student term, a user needs support to identify likely alignments. Our recommendation algorithm is

detailed in the next section. From a visualization standpoint, recommended or ‘candidate’ align-

ments appear in red (Figure 3.3). This helps the user to immediately identify relevant terms, and

it differs from the user’s alignments which appear in blue. Similar to Jigsaw’s use of a bar next

to the term, we use a labeled bar that shows the likelihood that each term is a good alignment. For

example, Figure 3.3 shows that ‘slower hiring’ is the most likely term at 60% whereas the other

candidate is at 40%.

3.4.2 Aggregate recommendation

There are three key principles to recommend an alignment. An alignment will be recommended

to a user proportionally to the number of (i) other users that endorsed it (ii) exactly, while (iii)

favoring users from the same application context. There are two consequences of this alignment

approach. First, a user will not get a recommendation from his/her own alignment. Consider for

instance that user U believes that “money” maps into “happiness”, but no other users have maps

including such terms. If U ’s alignment was used, then U would be told that the alignment is right
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since it occurs in 100% of applicable cases. Our exclusion thus avoids self-confirmatory biases.

Second, even the slightest difference between terms means that they are treated as different, and

the alignments that they are involved in are thus also different. For example, a user may have

aligned “stressed” to “depression” and another aligned “stressed” to “depressed”. These will be

considered as two wholly different alignments. This is a limitation of our approach, as we do

not currently use Natural Language Processing. The third principle reiterates the importance of

contextualizing language. If a user is trying to align terms for a music assignment, we will give

more weight to alignments also made in the context of music than in other contexts. That is, we

use a factor α > 0 which increases the weight of a recommendation made in the same context as

the user’s assignment.

We start by detailing the simplest case where a user has made no alignment. This will demon-

strate principles (ii-iii) and omit (i), which we will discuss as part of the general case. Our guiding

example is a user, Jane, working on a music assignment. The state of the database is shown in

Figure 3.8(a) while the user’s list of student and expert terms are shown in Figure 3.8(b). As-

sume that Jane clicks on the student term ‘note’. This prompts our algorithm to retrieve the list

of alignments involving the exact term ‘note’ from our Neo4J database, thus implementing prin-

ciple (iii). We denote this list of alignments by A. Each alignment a ∈ A is annotated with

the number of users users(a, d) that have constructed it, for each application domain d ∈ D. In

Figure 3.8(c), we see two alignments: the top alignment is endorsed by 1 music user, and the bot-

tom one by 1 science user. Formally: A = {Note → Pitch and duration,Note → Grade} with

users(Note→ Pitch and duration,music) = 1 and users(Note→ Grade, science) = 1.
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We use a preferential weight of α = 1.5, which means that alignments made by other music

users are worth 50% more. The total weight W(A) of the alignments, taking into account α and

the user u to whom we made the recommendation is as follows

W(A) =
∑
a∈A

∑
d∈D

 users(a, d) if d 6= domain(u)

users(a, d)× α if d = domain(u)
(3.1)

In our guiding example, W(A) = 1 × α + 1 = 1 × 1.5 + 1 = 2.5. The weight w(a) of an

alignment a ∈ A is the weighted summation of the users having this alignment, normalized by the

total weight of the alignments:

∑
d∈D

 users(a, d) if d 6= domain(u)

users(a, d)× α if d = domain(u)

W(A)
(3.2)

Here, ‘Note → Pitch and duration’ has a weight of 1×α
2.5

= 0.6, while Note → Grade has a weight

of 1
2.5

= 0.4. Both are recommended since they were in the list, but aligning ‘Note’ with ‘Pitch

and duration’ has a higher recommendation in the context of music than aligning it with ‘Grade’

(Figure 3.8-d).

If Jane clicks to make the alignment ‘Note → Pitch and duration’ and then commits it, the

database changes: this alignment is now done by 2 music users, and 1 science user. Another music

user, George, would thus see a weighted total of alignments of 2 × 1.5 + 1 = 4, and be told to

align ‘Note’ with ‘Pitch and duration’ with a weight of 2×1.5
4

= 0.75 or to align it with ‘Grade’

with a weight of 1
4
= 0.25. However, the weights should not have changed for Jane since her own

alignments should not bias the recommendations. This leads to the general case.
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In the general case, we also need to exclude a user’s alignments when computing recommen-

dations for this user. To achieve this,4 the list of alignments A is modified by decrementing

users(a, d) when (i) a has been chosen by the target user, and (ii) d is of the same domain as

the user’s. For instance, our music user Jane has done the alignment ‘Note→ Pitch and duration’,

which has now a score of 2 for music users. We would thus update this score to 2 − 1 = 1. If the

same alignment had been scored by science users, then this score would be unaffected.

3.5 Discussion

Comparing the map of a student and an expert is a difficult assessment problem, in part due

to variations in language. Identifying when the term used by a student is equivalent to an expert’s

term is thus an essential step to eventually compare maps as students solve ISPs. The previous

version of our software focused on aligning student terms with expert terms, and it introduced the

notion that previous alignments can be used to more quickly find the next ones. The newer version

of the software presented here proposes several significant improvements. The alignment process

is significantly simpler, by improving both on the usability (e.g., minimizing the number of clicks

necessary to make an alignment) and on the quality of recommendations to highlight potential

alignments. The process also becomes fully collaborative, as our software is now online and allows

us to easily invite other instructors to work or see the results of an alignment. These improvements

were enabled by the articulation of several technologies, including structured databases (MySQL),

graph databases (Neo4J), and visualization tools (D3).
4An alternative is to modify the core of equations 1 and 2 into:

users(a, d) if d 6= domain(u) and u did not choose a
users(a, d)× α if d = domain(u) and u did not choose a

users(a, d)− 1 if d 6= domain(u) and u chose a
(users(a, d)− 1)× α if d = domain(u) and u chose a

(3.3)

We did not retain this solution, and instead opted to keep the equations while updating the dataset on which they are
applied.
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There are several limitations to our approach, which may be addressed in future work. First,

our recommendation was based on a weighted aggregation method. This heuristic was used as

the data is small, since we are starting the system and we have a very high-dimensional space of

potential alignments. However, as data becomes available, content-based recommender systems

would be able to make better use of the data to offer recommendations [1]. In addition to rec-

ommendation quality, we also need improvements in transparency: our scores indicate the best fit

(e.g., 60% is more recommended than 40%), but the user does not currently know how this score

was computed and hence why it should be trusted. Gedikli and colleagues have developed “guide-

lines of how to build explanation interfaces for recommender systems that support the user in the

decision making process” [26], and such guidelines are a promising direction to ensure that users

do take recommendations into account for the right reasons.

Second, our system will only form a recommendation for a term if it was used without alter-

ation in a previous alignment. A human may look at terms that differ only due to typos, or the

use of plural instead of singular, and realize that they are the same term. Our system would con-

sider them as wholly different terms. Natural Language Processing (NLP) could be used in future

versions to preprocess the data and map variations of a term into a common root. Most interest-

ingly, NLP is also a promising approach to identify possible alignments, which can complement

the use of recommender systems. For instance, lexical databases such as WordNet can identify

relations between words. Methods for semantic relatedness can go one step further, by measuring

the strength of association between terms. Such algorithms are available as part of the open source

WikiBrain Java library [110]. As the library is built upon the 267 Wikipedia language editions,

it also offers support to identify semantic relatedness in many languages, whereas WordNet is a

lexical database for English only.

While the motivation for this work was to support the comparison of a student’s mental model

with an expert’s mental model, it also provides a method and software for the problem of comparing

mental models in several other applications. In socio-ecological dynamics, we recently found that
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the mental model of a stakeholder (in the form of a map) could be a good proxy to understand how

the stakeholder expects the system to change [81]. Comparing the mental models of stakeholders

thus holds the potential to contrast their expectations about a system’s behavior, and to lead to

focused conversations on how to steer the system towards a desired goal. In the field of health,

both policies for population health and individual perspectives can be represented as maps [18, 30].

Comparing these maps would thus help to understand how policies or individuals differ. Shifts as

captured by changes in a map have also been proposed to detect the emergence of a political crisis,

and our approach can be used to compare a map at different time steps [27, 93]. Finally, in the field

of Modeling & Simulation (M&S), a map is often produced as part of the conceptual modeling

stage, which identifies key factors and relationships before the model is operationalized (through

mathematics) and implemented (in a simulation model). Comparing models at a later stage such

as simulation is challenging, as there are differences in implementation and simulation method

(e.g., a map can be turned into a Fuzzy Cognitive Map, System Dynamics, or a Network model).

Comparing models at the conceptual stage would allow us to focus on the core hypotheses that

underlie a model. Previous work has analyzed models independently at the conceptual stage [31],

but a paucity of tools was available to contrast models. Consequently, there is an abundance of

opportunities to apply our tool in active research areas, and exploring these opportunities would be

a fruitful endeavor for future work.
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Figure 3.7: Entity Relationship (ER) diagram of the SQL database, from MySQL Workbench.
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Figure 3.8: Main steps of our algorithm to perform an aggregate recommendation.

Figure 3.9: Network built in Neo4J for aggregate recommendation.



CHAPTER 4

DIGITAL TOOLS TO GUIDE STUDENTS IN ANSWERING

ILL-STRUCTURED PROBLEMS

In the first chapter, we set as one of our objectives to assess a student’s map by performing

comprehensive network comparisons. The assessment is the focus of this chapter, building on the

preprocessing alignment of terms introduced in the previous chapter. Assessing maps can involve a

referent-free evaluation (e.g., to encourage the creation of maps with high density of concepts), or

a comparison to an expert map used as reference. This chapter starts with a review of theories and

tools to compare a student’s map to the expert map. Previous approaches often compared individ-

ual connections (e.g., scoring the number of connections that a student has/misses in contrast with

the expert) or general map metrics (e.g., one map is denser than the other). In contrast, the problem

of comparing two maps has been studied in network theory and graph theory for several decades,

yielding categories of algorithms that are currently under-utilized in educational research. This

chapter reviews three categories of algorithms (i.e., graph kernel, graph editing distance, graph

embedding) in light of their application to assessment and student success. We discuss an imple-

mentation of these algorithms through a new set of digital tools, designed to supports a community

of practice in problem-based instruction.

This chapter will be included in “Digital tools to guide students in answering ill-structured

problems”, a draft being prepared for publication by Philippe J. Giabbanelli, Andrew A. Tawfik

and Vishrant K. Gupta. My contributions consisted of writing the code for graph comparisons

and testing the results by using all three algorithms presented in the chapter.
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4.1 Introduction

For many years, education has often been administered using didactic and lecture-based meth-

ods. In these settings, a teacher often disseminates information and learners are tasked with mem-

orization of information. However, many argue this form of decontextualized education fails to

support learning transfer and engender problem solving. To address this challenge, theorists posit

that learning should be situated within problem-solving contexts [47, 66]. Instructional strategies

that employ ill-structured problems are often referred to as inquiry-based learning. In these instruc-

tional strategies, learners are often presented with a problem representative of the types of issues

that practitioners face. These problems are often characterized as being ill-structured; that is, the

problems lack defined goals or explicit ways to achieve the predefined goal state [42]. In contrast

to well-structured problems that have a set of correct answers, an ill-structured problem is often

assessed on the viability of the proposed solution given the constraints, perspectives, and standards

embodied in a context [135]. The belief is that the ill-structured and problem-solving approach

espoused in inquiry-based learning will generate more robust knowledge structures [11, 55, 75].

This shift in education towards an ill-structured approach has implications for theory and prac-

tice. In contrast with multiple choice questions that an instructor may use for assessment of a

well-structured problem, ill-structured problems require learners to identify the relevant elements

of the problem space and generate arguments about why a solution is viable and rational [72].

In addition, Eseryel, Ifenthaler, and Ge [21] see an “effective learning process as one that facili-

tates transition of problem spaces of learners from the state of preconceptions or misconceptions

to the state of comprehensive, causal explanations”. As such, the multiple-choice approach often

employed in the information dissemination model fails to meet the assessment needs of inquiry-

based learning. Therefore, educators look towards alternative forms of understanding complex

problem-solving, such as concept maps, which articulate concepts and their logical antecedents
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or consequents, because the creation of these artifacts affords learners opportunities to articulate

their understanding of the problem space and the causal relationships between the concepts [53].

Representing the problem space using causal maps is a critical cognitive process not only to the

success of that problem solving, but also to the refinement of the student’s conceptual knowledge

and problem solving skills. In doing so, these mapping processes also help students construct the

knowledge acquired into a conceptual framework for that problem [69, 132].

The shift in the student’s representation of knowledge creates challenges for assessment. Whereas

well-structured problems are assessed by the student’s ability to reiterate the predefined answer,

representations of solutions to ill-structured problems through causal maps necessitate a varied

set of cognitive procedures for assessment. There are two broad categories of procedures. First,

a causal map can be assessed through a scoring method that favors certain structures. For in-

stance, Kotovsky and colleagues [79] suggest that one way to understand complexity in problem

solving is through the ‘number of branches at each node and depth of search to a solution node’

(p.248). A metric can thus be developed where a student map with longer paths and more branch-

ing would score higher, indicating a more complex map. Such scoring methods are known as

referent-free. Structural attributes favored in students’ maps have included ‘parsimony, temporal

flow, total links, connectedness’ [61]. Extensions to causal maps have also been proposed, to bring

in elements specifically for scoring: weighted concept maps examine the weight of propositions

(i.e., links) [10], while a ‘concept map+’ distinguishes between types of links [91]. Second, a

student’s map can be assessed by comparison to a reference expert map. Ifenthaler suggested that

providing an expert map, and comparing it with student maps (e.g., for model-based feedback),

can foster a better understanding of a problem [52]. This potential was confirmed by experimental

studies [54, 127]. As pointed out by Trumpower and colleagues, ‘hand scoring knowledge maps

can be quite time consuming’, and many algorithms have been developed to automatically assess

digital knowledge maps [126]. These algorithms operate typically at the level of individual nodes

and links, to find the ones present in both the expert and the student maps, or present in the expert
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map but missing in the student map [126]. In parallel with the growing interest in comparing maps

in education, algorithms have been developed over several decades at the intersection of pattern

recognition and graph theory to address the related problems of map comparison, network align-

ment, and graph matching [24, 129]. The uptake of such approaches in educational research has

been limited.

The main contributions of this chapter are twofold. First, we detail how approaches in pattern

recognition and graph theory (e.g., graph kernels, graph editing distance, graph embedding) can

be used to go beyond comparing individual nodes or edges when assessing a student’s map using a

reference expert map. Second, to benefit the practice in the community of problem-based instruc-

tion and the field of education, we implemented these methods through client-server software that

supports instructors in comparing maps through several methods.

Figure 4.1: A concept map is a network or graph where relevant concepts are captured as nodes
(depicted as circles) with logical connections known as links to indicate antecedents and conse-
quents (depicted as arrows).
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4.2 Background

4.2.1 Developing knowledge structures through ill-structured problem

solving

Well-structured problems possess all of the necessary information, solution strategies, and cri-

teria for evaluation of the problem. Generally speaking, in these situations problem solving often

consists of problem representation and then a search for the correct solution [3]. These problems

are often employed in modern education because the predetermined nature of the solution affords

efficiency in assessment. Alternatively, inquiry-based learning suggests that learners should be pro-

vided opportunities to solve problems that are representative of a domain. Specifically, students’

learning is centered around real world, ill-structured problems [82]. These problems provide stu-

dents with a meaningful real world context for them to structure their domain knowledge schemata

in order to effectively retrieve them later in the workplace when needed [7, 107]. Clariana et

al. [12] suggest there are five features that distinguish simplistic and complex problem-solving

experiences. First, a complex problem often includes a greater number of variables presented in

the problem space. Furthermore, the connectivity among the variables and their interdependencies

further increase the complexity. They further postulate that the changing dynamics suggest that

state change and time are another factor. A further confound in complex problem solving is that a

goal state is unclear, also known as intransparency. Finally, several goals coincide, which impact

the activity of the individual.

How learners conceptualize the problem space is a critical issue in inquiry-based learning. The

problem space not only depicts the major concepts (variables) that have a role in the cause(s) or

the solution of the problem, but also provides an underlying explanation for the problem with

the causal relationships among the variables. For example, in medical education, the problem
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space should “include[s] all the causal mechanisms that account for the patient’s signs and symp-

toms” [46]; that is, the understanding of the problem is also described by the causal relationships

among the variables that detail the mechanisms for why the problem occurs and how it can be

solved [21]. Furthermore, when students construct a problem space through causal reasoning,

they are practicing the scientific problem solving process and consolidating their knowledge into a

knowledge structure.

Knowledge structures consist of the problem space that explains the mechanism of how all the

variables work together to manifest themselves as the symptom (‘problem’) [19, 52]. Knowledge

structures describe the degree to which an individual organizes information elements in mem-

ory. These include an individual’s understanding of the facts, concepts, and their relationships

embedded within the problem space. Theorists argue that strong knowledge structures facilitate

subsequent learning when new information is presented [5, 52]. Furthermore, it is posited that

retrieval is impacted by the construction of the knowledge structure; that is, a well-constructed

knowledge structure facilitates efficient pathways when learners need to reference an idea. It is

hypothesized that learning can be thought of as the degree to which learners alter their knowledge

structures. As it relates to education, theorists contend that the contextualized nature and empha-

sis on problem-solving in inquiry-based learning strategies facilitate the development of robust

knowledge structures.

Proponents of inquiry-based learning suggest that the emphasis on ill-structured problems bet-

ter bridges the differences exist that exist between knowledge structures of experts and novices [46,

68]. Whereas the knowledge structures of novices is characterized by misconceptions, disconnec-

tions, and surface level understanding of the problem space, experts include a more complete,

structural-level understanding. Experts’ knowledge structures are often defined as a more holistic,

schematic organization of information, whereby the concepts in the problem space are organized

in a relational and semantic manner [58]. In turn, this allows experts to approach problem-solving

in a decentralized way that supports causal reasoning [45]. In contrast to experts, studies show that
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novices’ knowledge structures often focus on readily available and most salient concepts, while

tending to overlook more foundational concepts that are not as obvious [20, 48]. In addition,

novices’ explanations are linear and focus on a single cause [37, 123]

4.2.2 Assessment in ill-structured problem solving

An important part of the problem solving process is the ability to understand the most relevant

elements of the problem space. Given that networks can be depicted through nodes and links [52],

concept and causal maps are becoming increasingly popular forms of assessment [90]. Clari-

ana [11] suggests there are four unique aspects relating to mapping of the problem space. First, the

open-ended nature of ill-structured problems requires learners to go through the process of recall-

ing and selecting which concepts (i.e., nodes) to include in a map. Upon completion, students must

be able to engage in meaning-making about how their concepts are related. Doing so generates im-

portant insights about the structure of causations (when a directed link goes from one concept to

another) and associations (when a link is undirected or two directed links are reciprocal). Causal

maps also elucidate what learners choose to select from the problem space (extent of knowledge):

the distance of those relationships (proximity), the links between the ideas (lexical association),

and the perceived final state of the problem representation (conditional knowledge) [12].

Although concept maps may serve to understand a student’s knowledge construction, the ill-

structured nature of problem solving and design of concept maps creates a significant challenge

for educators. Indeed, research finds that educators cite assessment as a significant barrier, which

precludes their proclivity to implement inquiry-based learning and ill-structured problem solving

in the classroom [122, 133].

Challenges particularly arise at two steps of the assessment. First, variations in language (e.g.,

‘cardiac arrest’, ‘heart attack’) can create an important confound that makes assessment inefficient
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and impractical. This problem may be prevented from appearing in the first place when students

are limited to using a complete list of concepts from the problem space, which may include ‘dis-

tractors’ or ‘misleading’ concepts [104]. For instance, in participatory modeling studies, linguistic

variability is limited by using a set of terms standardized through independent focus groups [35].

However, imposing such limitations may produce two maps that look more similar than the indi-

viduals’ knowledge structures [81]. The alternative is to place no restriction on the use of concept

names, and then to go through an alignment phase in which educators identify equivalent terms

either manually [32] or through algorithms such as recommender systems [38].

Second, once variations in language have been resolved, educators have to compare maps struc-

turally. Early approaches have focused on counting elements that are present in both the student

and expert map, or only in the expert map. For instance, such approaches can point out which

links are shared, and which links the student may miss [126]. More recent approaches have treated

causal maps as graphs, using structural metrics derived from graph theory, social network analysis,

or network science. For instance, the diameter of the spanning tree was proven to be a reliable mea-

sure [52]. More recently, Lavin and colleagues demonstrated using 264 maps that specific types of

centrality indices (i.e., metrics to score the importance of nodes) could be used to infer that indi-

viduals or groups would make similar predictions [81]. Other approaches and experimental studies

using structural matching, semantic matching, overlap measures, and propositional matching have

been detailed by Krabbe [80]. In sum, assessment approaches mostly employ tools from graph

theory designed to measure structures in one map (e.g., diameter of the spanning tree), and then

two maps were compared with respect to their individual measures. This is an indirect approach

to comparison, using tools that were not specifically designed for this purpose. In contrast, graph

theory (and particularly as it relates to machine learning) possesses many tools to specifically com-

pare maps. That is, tools exist that can take in two maps, and compute the distance between these

maps. The next section seeks to address the paucity of graph comparison methods in assessment

by providing a brief overview of these tools and their possible uses in educational research.
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4.3 Using graph comparison methods for assessment

4.3.1 An intuitive introduction to graph comparison

There are three broad approaches to comparing a student map with an expert map. While they

are grounded in graph theory and machine learning, this section provides an intuitive overview

of these approaches. Details and pointers to formal specifications are provided in the following

sections. Examples from assessment are reinforced with the metaphor of comparing houses.

First, we can measure the number of changes necessary to transform one structure into another.

Graph Edit Distance (GED) accomplishes it by finding an efficient sequence of transformation. In

the case of houses, we can compare their plans side by side, and see what changes are necessary

to turn one house into the other, such as adding a bedroom, removing a bathroom, or re-labeling a

bedroom as a home office. In the case of maps, we can add or remove nodes and edges, or re-label

a node’s name. The output of the GED is a single number (i.e., the distance), but the process to

compute it is also of interest for assessment.

Second, rather than doing a possibly long sequence of minute changes, we can ask whether

‘the big picture’ is similar in two structures. The idea of a graph kernels is to focus on the core

of a structure. For instance, the core of a house could be the size of its rooms. We would thus

compute the distribution of room sizes in both houses, and compute the distance between these

discrete distributions. Similarly to GED, the output of a kernel is a single number, but it measures

the discrepancy between distributions of user-defined features. For example, taking the approach

of Kotovsky and colleagues [79], we could measure the distribution of the number of branches per

node, as a proxy to a map’s ‘complexity’.

Third, we could apply a set of metrics to the structures, and compare them based on the results

for each individual metric. In the case of houses, one may measure taxes and surface area, and then
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each house can be plotted into a 2D space where taxes are on the x-axis and surface area on the

y-axis. The final result of a graph embedding is thus a single number comparing points in space.

For a map, we can measure N features, and plot the map in a space of N dimensions.

Within each approach, we have to state precisely what we value. For instance, in graph edit

distance, is it worst when a student has a link that the expert does not have, or misses a link that

the expert does have? In graph kernels, which structures are indicative of learning? For graph

embedding, which features should we extract from a map? Finally, we need to select an algorithm

that efficiently accomplishes the computations. There are dozens of algorithms to compute the

graph edit distance, numerous ways to compare two distributions, and several methods to compare

two points in space. The remainder of this section details each approach, including its implications

for the assessment of digital knowledge maps in education, and how to choose values as well as

algorithms in this context.

4.3.2 Graph Edit Distance (GED)

There are two broad approaches to graph matching. On the one hand, we can require an exact

match, when asking questions such as ‘are the student and expert maps identical’, or ‘what is the

largest part of the expert map that the student got right’. However, these questions may not be of

practical relevance (e.g., the student and expert maps are very unlikely to be identical), and the

answer may support summative assessment more than formative assessment. In addition, these

questions are respectively known as graph isomorphism and subgraph isomorphism, and solving

them in a reasonable amount of time remains an active area of research [4, 9]. For all these reasons,

solutions such as Graph Edit Distance (GED) have been developed to handle an inexact match, in

which differences between maps are penalized rather than forbidden.
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In Graph Edit Distance, we look for an edit path, that is, a sequence of operations that trans-

forms the student map (source) into the expert map (target). Operations can be performed on edges

(deletion, insertion) and nodes (deletion, insertion, re-labeling). It is always possible to transform

a map into another one: for instance, we could delete all of the students’ nodes and edges, and

then add all of the expert’s nodes and edges. We are thus interested in finding the best path. When

all operations are viewed as equally important by the instructor, then the best path minimizes the

number of operations.

As the method is flexible, instructors can also state that some operations reveal more of a mis-

understanding from the student than others. For example, studies suggest that students struggle to

remove extraneous concepts from a problem space [45]. In addition, studies find that students fo-

cus on the surface level characteristics rather than the less-salient concepts that are more central to

the problem [20, 58]. In these cases, the best path is one that minimizes the sum of the operations’

costs. The costs of operations such as adding/removing nodes is usually set to a positive constant,

and the same applies to edges if they do not have a label. The costs for re-labeling have often been

approached from a theoretical perspective [115], where labels are seen as vectors of characters

and pair-wise differences are computed between characters (e.g., ‘bad’ and ‘sad’ differ by only

1, whereas ‘bad’ and ‘not good’ differ on all 8 characters). In contrast, for assessment, we are

interested in the semantics of the words. Methods exist to automatically measure the strength of

association between terms [110], but they have not yet been widely applied in the context of com-

paring maps, perhaps due to the paucity of use for graph comparison techniques in educational

research. Our recommendation would be to resolve variations in language before computing the

GED. In other words, a preprocessing step would align terms and that would avoid penalizing for

variations in language during the GED. All remaining differences in labels would incur the same

constant cost.

Once the instructor has preprocessed the maps (to resolve variations in language) and identified

suitable costs, then the GED can be computed. This is useful for summative assessment (as the
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Figure 4.2: A student map (top left) can be transformed into an expert map (bottom right) through
sequences of operations, some of which are equally short (green, orange) and some of which go
through unnecessary steps (red).
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GED is a number summarizing how ‘close’ the student got to the expert), and particularly for

formative assessment as computing the GED shows how to transform the student map into the

expert’s. This is related to the concept of action sequence in educational research. In contrast to

general guidelines or ‘one size fits all’ approaches to identifying general action sequences leading

to accurate maps [61], computing the GED can create an entirely personalized action sequence for

a given student’s map. Future research may explore whether these personalized action sequences

do cluster across students, and if so, based on which individual characteristics. Clustering and

sequential pattern mining would provide powerful methods towards this objective [92].

4.3.3 Graph Kernels

A graph kernel considers a graph as being made of an unordered collection of simpler patterns.

The matching problem thus consists of extracting and comparing these patterns. The patterns

are user-defined, thus they vary depending on the emphasis and context of each study. These

techniques are particularly used to compare biological networks, and they are summarized in this

context by Mueller et al. [88]. Patterns have included ‘graphlets’ (i.e., all subgraphs with 3, 4,

or 5 nodes) [113], which are similar to the ideas of motifs and the Triad Significance Profile

used in social networks and regulatory networks for biology [73, 105], trees, when comparing the

structure of molecules [85], and cycles, which have also been used for molecules. When it relates

to assessing causal maps, patterns can be used to examine the level of systems thinking exhibited

by a student. In the classification of systems, independent nodes are at the lowest level of systems

thinking, while edges can be slightly higher [86]. When going even higher, we start looking at

feedback loops, also known as cycles. A set of nodes are in a loop if, starting from any node

in the set, we can follow a sequence of edges that ends at this node. Loops capture a student’s

understanding that ‘a change can be initiated everywhere in an event circle and after a certain
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time be read off as either cause or effect elsewhere in a system’ [114]. Studies have shown that

loops were absent from many causal maps about a variety of problems even when they drive the

dynamics of these problems in the real world [6]. It is thus important when comparing the maps

made by individuals to look at their cycles. That is, a relevant kernel for assessment would be the

distribution of cycles, which counts the number of cycles (y-axis) of each length (x-axis). In sum,

comparing two maps would compare their distributions of cycles.

Figure 4.3: Comparison of two maps based on cycle distribution.

There are several important differences with using the GED described in the previous section.

The GED takes a very detailed view of all the operations needed for the transformation: it measures

what is different, and tells the student how to fix it. This serves as a form of knowledgeable

peer and scaffolding as students are alerted to gaps in understanding. When students become

aware of their knowledge deficiencies, they are encouraged to reflect and later iterate their problem

solving [25, 50, 125]. The kernels would not give us an action sequence, but they would tell us the

bigger picture of how a student ‘thinks’ compared to the expert. For instance, the GED may tell

the student to add 4 links because the expert has them. However, three of those links may be used



56

to close a loop, and it is thus particularly important that they are present, whereas the fourth one

only connects to a peripheral concept.

An action sequence could still be derived from kernels, for instance by listing all the loops that

the students missed, and highlighting which specific edges have to be added for these loops. Simi-

larly, we can list loops that the students claimed but the expert does not endorse. An experimental

study may compare whether this action sequence or the one generated by GED yields either more

accurate maps, or a better understanding of the problem.

4.3.4 Graph Embeddings

Several measures from graph theory have been mentioned in relation to the assessment of

causal maps [80], including the diameter of the spanning tree, the number of components (i.e.,

disconnected parts of a map), or the density (i.e., ratio of edges present to the total number of edges

that could connect the nodes). Each one of these measures produces one number. Comparing two

maps by looking at each individual measure can be a challenge. For instance, are two maps similar

if both have a single component, but one is denser than the other? Would they be more similar if

one was less dense, but had a longer spanning tree? A composite score can be created to provide a

single number based on a set of metrics. While this can be achieved by approaches such as taking

the weighted sum of the underlying metrics, it raises the question of how to set appropriate weights

for each metric, and whether we should account for interactions between metrics to avoid double-

or triple-counting. In contrast, graph embeddings provide a mathematical framework. The idea is

to ‘embed’ an object (i.e., a map) into a vector space, where the distance between the embedded

objects serves as a proxy for the actual distance between the objects themselves [44].

In the case of embedding causal maps for assessment, the instructor decides on N metrics to

use. Each map is then transformed into a vector with N coordinates, whose values are the graph’s
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scores on each selected metric. For instance, Figure 1.6 shows how three maps can be positioned

in a 3-dimensional space based on their number of nodes, number of edges, and average number of

edges per node (i.e., average degree). Using only 2 or 3 metrics allows instructors to conveniently

see each map as a point in space. When using 4 or more metrics, results can still be visualized but

the multi-dimensionality requires the use of techniques such as parallel coordinates [57], which

may be less intuitive. Once the maps have been transformed into vectors based on selected metrics,

the vectors can be compared. This can inform instructors on whether a student is heading in the

same direction as the expert. For instance, a student may have several nodes, many edges, and

a few cycles. If the expert has these elements in similar proportions, but in a larger map, then

we suppose that the student’s structure is going in the right way and may need time to mature.

Conversely, if the student has few edges and no cycles, then an intervention may be needed to set

the student on the path to success.

4.4 Implementation

Our implementation grew out of the Incremental Thesaurus for Assessing Causal Maps (ITACM)

software. The software was first released to assist with reducing linguistic variability when assess-

ing maps [32], and the comparison then consisted of counting the percentage of factors whose

names were equivalent in two maps. The software has three broad limitations. First, it did not

allow for the comprehensive forms of comparison summarized in section 1.2.3. Second, it was

a desktop application, although previous studies have ‘advised to use software with a web inter-

face or client-server architecture that allows to retrieve a concept map from different work places

through the Internet’ [80]. Third, the reduction of linguistic variability was a labor intensive pro-

cess, where the computer was only able to recognize whether two terms were set as equivalent by

the instructor previously.
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The second release, ITACMv2 [38], addressed the last two limitations. Taking a client/server

architecture allows the software to support a community of practice. Given that educators strug-

gle with the initial preparation of inquiry-based learning, allowing users to share maps with their

peers allows us to save time in terms of onboarding [15, 122]. Rather than starting with a ‘blank

slate’ to redesign the curriculum, sharing resources using an open education format allows educa-

tors to leverage expertise within their own learning communities, which allows dissemination of

best practices within peer networks. The use of recommender systems also allowed instructors to

identify potential equivalences between terms used by the student and the expert, which results in

a faster alignment process.

Our newest release, ITACMv3, addresses the last limitation by giving access to all three ap-

proaches to comparison presented in this chapter. The implementation of the Graph Edit Distance

uses the beam search approach [98, 99]. The intuition is as follows. Given a student map with N

nodes and an expert map with M nodes, we can start by taking one of the student’s concepts and

see onto which expert’s concept to map it. There are M possibilities. We can continue the process

with the next concept from the student, and there are still M possibilities as two concepts from

the student may refer to the same concept in the expert. There are thus on the order of MN edit

paths. Finding the right one is similar to a game of chess, in which a very large tree is created

to compute each possible move, the resulting board configuration, and each possible move within

each configuration. Tree-search based methods such as the A* algorithm thus estimate the cost of

each of the possible branches. Beam search is an improvement introduced by Riesen that further

prunes the search tree. Five other alternative implementations are presented in section 4.2 of [96].

Our implementation for graph kernels uses cycles. Cycles are listed using Johnson’s algo-

rithm [63]. The problem of comparing two maps has been transformed into comparing the distri-

bution of their cycles. A statistical approach to measuring differences between distributions is to

use an f-divergence, which is a type of function. Specific functions include the Hellinger distance

and the Kullback-Leibler divergence (known as KL-divergence). KL-divergence is widely used
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in information retrieval and machine learning. But we implemented Hellinger distance, as KL-

divergence requires one map to be derived from another map and it is possible that a student might

totally differ from the expert’s map. A Hellinger distance of 0 suggests we can expect a similar

behavior, while 1 suggests that the distributions behave very differently.

Finally, for graph embeddings, we used three metrics: the number of nodes, number of edges,

and the graph density. The similarity between two maps is computed using the cosine similarity

between their corresponding vectors. Two vectors with the same orientation have a cosine similar-

ity of 1, intuitively meaning that the two maps are ‘thinking in the same direction’. Theoretically,

diametrically opposed vectors have a cosine similarity of -1, but this situation cannot exist here

since the metrics produce strictly positive numbers. Thus, the minimum cosine similarity is 0,

when vectors are orthogonal. Our interface is shown in Figure 4.4. We recommend that instructors

first align the terms to reduce linguistic variability (first tab), optionally inspect the maps visually

(second tab), and then start to compare maps (third tab). Explanations are provided for each metric

to aid with interpretability of results.

4.5 Discussion

Ill-structured problems serve as the foundation of inquiry-based learning. These problems are

defined as having multiple problem elements, unclear goals, and constraints. An individual must

thus articulate multiple solution paths and criteria for the proposed resolution [69]. In doing so,

educators are able to go beyond the traditional, didactic forms of learning as they pursue higher

order learning outcomes [42, 45]. Indeed, various studies cite the benefits of ill-structured problem

solving afforded by inquiry-based learning when properly supported [76, 82, 131].

The aforementioned instructional strategies have given rise to alternative forms of knowledge

representation. Hung [51] contends that students should be evaluated on their ability to ‘articulate
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Figure 4.4: The newest version of the ITACM software includes a ‘Compare maps’ tab, in which
educators have access to an implementation of Graph Edit Distance, Graph Kernel, and Graph
Embedding. Details of the specific implementation can be accessed by expanding the panel ‘How
does it work?’ within a metric.

the critical elements of the problem, their process for solving it, and the solution proposed and

defend their proposed solution and the rationale, rather than whether they match predetermined

answers’ (p. 547). One evidence of how learners solve ill-structured problems is through causal

maps, which require learners to articulate relationships consisting of the concepts’ antecedents and

consequents [69, 132]. Causal maps are especially beneficial because they provide insight into

the connections that learners make between elements of the problem space, along with affording

opportunities to depict multiple solution paths for ill-structured problems [12, 69].

Despite the purported benefits of inquiry-based learning, educators face unique challenges in

implementation [51, 133]. One emergent confound for educators is how to assess ill-structured

problems accurately and efficiently. In terms of the former, ill-structured problems are defined

by their ambiguity. Moreover, ambiguity of assessment is impractical from a time-management

perspective. Research suggests that educators cite assessment as a primary reason for failing to



61

sustain inquiry-based learning in the classroom [15, 122]. To date, there have been a number of

attempts to resolve the assessment challenge in inquiry-based learning. One approach is ‘referent-

free’, as the causal map of each student is assessed independently with respect to certain desired

structures such as the total number of links [61]. The other approach assesses a student map using

an expert map as referent. This is the approach studied in this chapter. Experimental studies

have demonstrated that using a referent can foster a better understanding of the problem [54, 127],

but a manual comparison of maps is too time-consuming and calls for the development of digital

tools [126]. Several such tools have been developed, but they are often limited in contrasting low-

level features (e.g., number of links that a student has or misses vis-a-vis the expert) or a set of

properties (e.g., number of disconnected components within the maps). In contrast, graph theory

and machine learning have created many algorithms specialized for comparing maps [24, 129].

This chapter has introduced three categories of algorithms for map comparison, with a focus on

their applicability for the assessment of causal maps.

We showed that Graph Edit Distance (GED) provides both an estimation of the difference be-

tween maps (for summative assessment) and an action sequence personalized to assist a specific

student in bridging the gap with the expert map (for formative assessment). An open question is

whether the personalized action sequences tend to cluster, and for which student characteristics.

This may assist instructors in better analyzing the learning journeys of a group of students or, simi-

lar to the design of group-level interventions in health [30], it could assist with the identification of

more homogeneous groups of students. An open technical challenge is to estimate the semantic re-

latedness of terms used by students and the expert, such that the action sequence can deliver better

explanations than merely asking students to change a concept’s name. We discussed the benefits of

graph kernels for assessing systems thinking in students, by extracting the distribution of feedback

loops in their maps, and comparing it with the expert’s. An open challenge is to use the differences

of loops between the student and the expert to provide an action sequence. A possible benefit is
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a higher-level view on why the student needs to consider certain edges (e.g., because they close a

loop and give rise to certain dynamics), which the GED does not provide.

Lastly, we examined the potential of graph embeddings to create a composite score and reveal

whether a student is thinking in the same way as the expert. This may be most useful to provide

feedback as the student gradually develops the map. An open question would be to determine

the threshold of the difference between the student’s map and the expert’s, such that timely rec-

ommendations can be made to assist the student in staying on the right path. We acknowledge

that taking such approaches to assessing causal maps requires a leap forward, given that current

software in educational research implements none of these approaches. We have thus provided

one implementation (ITACMv3) for all three approaches, which educators can use within their

own learning communities. Experimentally evaluating and contrasting these three approaches are

long-term objectives that are well-worth addressing for the research community.



CHAPTER 5

DIGITAL TOOL TO IMPROVE STUDENT’S MAP BY PROVIDING

THEM WITH FEEDBACK

5.1 Introduction

The existing research in structural assessment of knowledge (SAK) [128] primarily focuses

on conceptual maps in various forms. However, there is precedent for addressing ill-structured

problems by modeling them as causal maps [116]. Since causal maps can be considered as a more

highly constrained form of concept maps, many of the same techniques used for evaluating and

comparing concept maps can be applied to causal maps as well. Since the relationships avail-

able in causal maps are highly constrained (only directed edges representing positive and negative

causal influence are allowed), comparing the relationships between concepts is relatively simple,

without any need to determine how closely the specified relationships in two maps match. In addi-

tion, causal maps are widely used in certain areas already (e.g., modeling and simulation, system

dynamics), so there exists a community of practitioners already familiar with their use.

Wu et al. point out that new information should be taught in relation to the learner’s original

This chapter is a joint contribution of:

• Vishrant K. Gupta, Russell Lankenau, David Offord and Adam Wykle.

My contributions consisted of developing the software, implementing and testing it by leading

the team in discussions to provide technical solutions for generating feedback.
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knowledge structures [134]. This suggests to the authors that whenever possible, the terms used by

students creating concept maps should be preserved. It is proposed that this increases usability of

the feedback produced by the software as well as contextualizing suggestions within the learner’s

existing knowledge. Although it is recognized that maps that are created without restricting terms

are more useful to students [49], the prevailing attitude is that comparison of maps using terms are

extremely difficult to compare and evaluate [49, 87, 106, 134]. The software uses a subject-area

specific thesaurus database constructed by users to allow terms in one concept map to be aligned

with terms used in an expert map to facilitate comparison. This feature allows concept maps to be

effectively analyzed while still maintaining the terms specified by the student who built the original

map.

The area of focus in applying causal maps to SAK is what Trumpower and Vanapalli refer to as

“SAK for Learning”, i.e., the use of SAK to provide feedback for students and guide the learning

process [87]. Wu et al. developed a technique for generating meaningful feedback for students by

providing hints regarding changes that should be made to their maps in order to bring them closer

to those provided by experts [134]. These hints were in the form of “there is a missing notion

related to Concept A” and “there is a missing connection related to Concept A and some other

Concept” [134]. Students would submit their map, make changes based on the provided hints, and

then submit their revised map. They would also be provided a score to give them an idea of the

overall correctness of their map. The system also provided links to supplementary information that

would provide direction surrounding implementation of each hint [134]. In the study conducted by

Wu et al. where the same supplementary information was available to students using a system that

provided feedback and a control group, students using the feedback generation system accessed

the information more frequently [134]. While useful, such feedback must typically be created by

instructors, and may be a deterrent to adoption of such a system.

In addition to the individual relationships represented in concept maps, causal maps are typi-

cally analyzed for the presence of large system-level structures that can cause large system-wide
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changes. Two such structures are the presence of disjoint paths between concepts and the presence

of loops. Both disjoint paths and loops can exert a large amount of influence on the behavior of

a system, so they are important features for students to identify in their own maps and those of

experts.

The software provides suggestions for improving the student’s map based on direct comparison

between student and expert map. Also it indicates whether the conception of a student about the

system as a whole is lacking or not. In addition to direct suggestions about adding and removing

a node it is necessary to identify higher-level structures that can be used to guide the student in

developing their systems thinking skills. Two such structures in causal maps are disjoint paths and

loops.

5.2 Disjoint paths and loops

Disjoint paths in a causal map represent multiple ways in which one factor can influence an-

other, and can help us to identify areas of the model where multiple influences combine to reinforce

or balance system-level effects. Similarly to causal loops, if we have an odd number of edges with

negative causation in a path, the net effect of the path will be negative, otherwise it will be posi-

tive. Identifying areas where students have missed disjoint paths is important because people tend

to miss system-scale structures when building models due to our inability to consider all factors

involved simultaneously. Knowing that additional disjoint paths exist between two nodes can pro-

vide the student an area of focus, allowing them to concentrate on specific areas during the learning

process. In addition, the purpose in modeling is often to determine areas where interventions can

be made. Disjoint paths provide useful information in making this kind of determination: a node

where many disjoint paths originate could be a powerful lever for changing the node where those

paths terminate, but if these paths have mixed positive and negative net effects, the impact of an in-
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tervention might be difficult to predict. In either case, without identifying the set of disjoint paths,

we can’t decide either way.

Figure 5.1: Example: Disjoint path.

In order to identify multiple disjoint paths, we must examine each pair of nodes in the map

independently. For each pair of nodes, we can determine the set of disjoint paths between them

by using Tarjan’s extension of Suurballe’s algorithm, which discovers all paths between two nodes

in a graph that do not contain any shared edges [121]. Each iteration of the algorithm requires

running Dijkstra’s algorithm, followed by a modification to the set of edges based on the edges

contained in the shortest path. Each iteration discovers a single path, in order of length, so it is

fairly easy to restrict our search to the most direct set of disjoint paths if we want to reduce the

time required to analyze a map.

As humans we tend to reduce the complexity of concepts as a way to prevent information

overload and to reduce the amount of mental energy required for a task. As a result, people usually

think acyclically, which leads to ignoring feedback loops between concepts. In order to help the
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student see past their own biases, the system allows instructors to detect loops that may be missing

from the student’s graph.

A loop in a casual map can be one of two kinds, a reinforcing loop or a balancing loop. Re-

inforcing loops are cycles that grow or collapse a system over the course of the simulation. If we

have an odd number of edges with positive or negative causation in a loop, the net effect will not

be zero, which makes it a reinforcing loop. Balancing loops, on the other hand, will continue to

stabilize the system over the life of the simulation by maintaining the stock of variables. Both of

these are very important because they can stabilize or destabilize a model very quickly. By in-

serting even a single missing loop, a student’s map could fundamentally change. This could have

drastic effects on the way the simulation runs and change the outcome in major ways.

Figure 5.2: Example: A balancing loop.
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5.2.1 Implementation of disjoint path and loops

To implement the insertion of missing loops into the student’s graph we first need to be able to

recognize loops in the instructor’s map. In this software Johnson’s algorithm was used to identify

loops [64]. After we have the list of loops in the expert’s map and the student’s map, we can

use them to analyze the student’s map and identify what the map is missing. Once the missing

components have been identified, we can now insert the required nodes for the loop to exist. This

would be an inexpensive way to implement the discovery of loops and insertion of the nodes

required to create them.

The goal is to add a new feature to allow an instructor to quickly determine how a student’s

causal map, created with no restrictions on available concept terms, differs from the expert map,

which may have been created using a different but analogous set of terms, and to create a set of

feedback items that can be used to improve the student’s map. Our focus was on causal maps,

where system-level interactions are extremely important, so it was important to generate feedback

that did not simply rely on a direct comparison of nodes and links.

Wu et al. implemented a system for generating immediate feedback for students using concept

maps with a predefined set of terms and relationships, and a set of weighting factors correspond-

ing to the relative importance of the relationships. The process of annotating relationships with

weighing factors is an additional task required of the expert creating the map. This factor was only

used to calculate the “correctness” score of the student map [134]. Rather than requiring any addi-

tional annotation of the map in order to provide meaningful feedback, we focused on system-level

features. This was only possible because causal maps exhibit system-level behavior indicated by

multiple-hop paths. Since more general forms of concept map allow for many different types of

relationships, only single-hop paths are typically examined.
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In order to provide feedback on situations where the student failed to identify that there were

multiple paths of influence between two nodes, we implemented disjoint path detection, using

both an edge-disjoint path detection algorithm and a node-disjoint path detection algorithm. The

node-disjoint path detection algorithm was based on a transformation scheme outlined in Suur-

balle’s 1974 paper, but used the same underlying technique as the edge-disjoint version [120]. We

consider detection of disjoint paths important because it can identify situations where a student

only identified the most obvious way in which one concept influences another and did not consider

alternatives.

The other type of system-level structure we identified were loops. Loops represent feedback

within a system, either amplifying or damping down different effects. Many complex systems con-

tain loops, so the absence of loops is another indication that the student may not have considered

all possible influences present in the system.

Rather than simply displaying the feedback directly in the tool, we also provided a method

for exporting the feedback as a CSV file suitable for analysis using standard spreadsheet tools or

custom analysis software. By simplifying the process of getting data out of the tool, we hope to

make it easier to use for future analysis.

5.3 Design Process

In order to provide a tool that allows instructors to easily evaluate causal maps developed by

students and guide students in making improvements to their maps, we began by identifying the

intended users of the software and considering possible user interface designs with those users in

mind. Although students submit maps to be evaluated, the users of the software are instructors.
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The expert maps used for comparison may or may not have been created by the instructor using

the software. We assumed that the users were familiar with concept maps in general.

Our design goals for the new functionality were to provide the instructor with feedback that

could be conveyed to the student at their discretion in order to make the student’s map more closely

resemble the expert’s map, and to use a simple user interface that would allow the instructor to ori-

ent him or herself within the student’s map. Another design guideline we established early on

was that we would use the phrasing specified by the student whenever possible, so that the stu-

dent could more easily contextualize the changes that were required. Ho, Kumar, and Velan point

out that “meaningful learning” involves “integration of new knowledge with existing understand-

ing” [49], which lends support to this approach.

With our design goals laid out, we began brainstorming different approaches. We decided

fairly early on that we would not require instructors to annotate the expert maps with justifications

explaining the reasoning for including specific structures. This was deemed to be too much addi-

tional work for the instructor. After some discussion of possible approaches, we categorized our

possible approaches according to two distinct axes: the level of detail included in the feedback,

and the style of feedback provided. We considered both textual and graphical displays in terms

of feedback style, and various levels of detail ranging from a step-by-step modification plan for

the student map to a very general display showing the merged maps with differences highlighted,

similarly to the approach used by Sanwar and Trumpower [106]. After building wireframes of

each of the possible user interfaces, we selected a combination of textual and graphical approaches

to provide both specific feedback and context within the student map (see Figure 5.3). Rather than

provide incremental feedback (e.g., the one or two feedback items judged most important), we de-

cided to provide the entire set of feedback items in a list. This allows the instructor to judge which

feedback items most effectively reinforce the learning outcomes they are working towards.

We implemented the desired features in several phases in order to gather feedback on the us-

ability of the tool. We began by only suggesting changes to a student map based on differences in
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Figure 5.3: Wireframe of the proposed solution to provide feedback.
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the set of nodes or edges between the student map and the expert map. We then moved on to the

detection of edges that were part of loops or disjoint paths between concepts present in the expert’s

map but missing from the student’s. Each feedback item was justified with a set of reasons listed

in the table, such as “The node ‘concept 1’ was present in the expert map” or “The edge between

‘concept 1’ and ‘concept 2’ would complete a loop present in the expert map.” When multiple

reasons were applicable, we listed all possible reasons. In addition to iterating on the types of fea-

tures detected, we also simplified the user interface at the same time, removing radio buttons which

were not necessary, and selecting a single color to highlight concepts and relationships which were

mentioned by the feedback item selected by the user. We also added the ability to export the full

list of feedback items to a CSV file (see Figure 5.4).

Figure 5.4: An example of how feedback is provided.



CHAPTER 6

CONCLUSION

Well-structured problems are the most common type of classroom exercise, but they do not

capture the complex context of the real world. Ill-structured problems are much more represen-

tative of problems encountered in the real world, but their solutions are much more difficult to

access. Ill-structured problems often require context outside the problem statement and have a

complex solution space with multiple valid solutions.

Causal networks are a powerful tool for representing the way individuals conceptualize solu-

tions to complex problems. By documenting the factors involved in a problem and their relation-

ship to other factors (as shown in Figure 6.1), we can analyze the way that a system reacts when

certain factors are changed. A causal map thus can be used by both students and teachers to visu-

ally represent their knowledge and understanding of a system. These maps can be used in all types

of classroom situations as described by Spector et al. for MOOCs [117] and M. Wijnen et al. for

a classroom-based course [122, 133]. The visual representation of a system using a causal map

promotes cause-and-effect thinking of a system and thus helps in understanding it in a better way.

A causal map can be a way to organize information about the system in a meaningful and logical

way that shows a relationship between different concepts using links between nodes.

A causal map can be used to solve ill-structured problems (ISP) faced by practitioners as a

result of a broader set of solutions produced against an open-ended question asked in a classroom

environment that are often well-structured as they have predefined answers. The solutions pro-

duced by a student in the form of a causal map are often contextual [67]. A student causal map

can be contrasted with an expert’s map, but a perfect comparison is a graph isomorphism problem

which is NP-complete and requires exponential computation time.
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Figure 6.1: Demonstration of a factor influencing another factor.

6.1 Contribution

Causal networks built by students can demonstrate their understanding of a problem but it is

difficult and time-consuming to access their submissions and evaluate their correctness. Compar-

ing student networks to expert networks is the best way to accomplish this. When comparing two

causal networks, we are faced with three problems: determining how the included concepts com-

pare between the two networks, calculating how similar they are, and providing feedback for the

student on how to improve.

Each individual creating a causal network will have slight variations (as illustrated in Fig-

ure 6.2) in the way they name the included concepts and the level of abstraction they use. Before

we can do any meaningful comparison between two networks, we must determine how the terms

used in the networks match up. Performing this network comparison automatically is extremely
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time-consuming because the computer must analyze every possible mapping between concepts as

shown in Figure 6.3.

Figure 6.2: Variation in terms of student and an expert in causal map.

Figure 6.3: The possible number of comparison between a term of student’s and expert map.

One of the key contributions of this software is to provide a visual way to align student’s terms

with expert terms by providing them with visual feedback (chapter 3) using an aggregate based

recommendation system.

Once a common set of terms are established after alignment between two networks, multiple

mathematical techniques are used to provide numerical measurements of how closely the two net-

works match. The second major contribution includes comparing a student causal map with an
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expert’s map using multiple graph algorithms like graph edit distance, graph kernel, and graph

embedding.

Although convenient, a simple measurement does not provide much information about where a

student could improve. To provide this type of information, we must examine the networks in more

depth and identify features that need to be changed in order to improve the student’s network. The

third important contribution of this thesis includes providing hints or feedback regarding changes

that should be made in student maps in order to bring them closer to causal maps provided by

experts by finding loops and disjoint paths in the network (chapter 5).

6.2 Limitations

One limitation of the current study is the requirement for individuals to accurately process

visual cues. We assumed that the causal map provided by an expert will show all the concepts

and factors influencing another factor. This might not hold true all the time and an expert might

not predict all the factors that will influence a system. This limitation can be overcome if multiple

reviews of the causal map are done.

Another limitation that we faced was a limited number of users and thus we had a small the-

saurus of similar terms. This limits us in implementing a collaborative based recommendation

system as collaborative filtering requires very large data sets, although this limitation will be fixed

in a future enhancement when we will have enough term alignments done by users.
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6.3 Future work

6.3.1 Collaborative filtering based recommendation system

Alignment of terms can be a time-consuming process even with a recommendation system be-

cause of the fact that the number of users is limited in the initial phase of software development.

Once we acquire sufficient data and build a thesaurus the recommendation system will be improved

by using the collaborative filtering technique. Collaborative filtering has a challenge with multiple

synonyms that a student might use to refer similar terms, for example “children movie” and “chil-

dren film” mean the same thing. This decreases the performance of a collaborative filtering based

recommendation system. In this case, topic modeling can be used for grouping different words

that belong to the same topic. Some of the topic modeling techniques that can be used include the

Latent Dirichlet Allocation technique.

6.3.2 Clustering students

In order to improve the student’s learning and understanding of a system, adaptive and innova-

tive based learning should be attempted that will thus improve the quality of education. However,

this requires feedback that needs to be provided to the instructor of how students are performing in

class. This can be achieved by clustering students in groups. We proposed a method for clustering

students based on multiple graph matrices such as graph edit distance, graph kernel, and graph
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embedding. These graph matrices can be used to contrast distance between causal maps submitted

by students to form clusters. The prototype of this is implemented as shown in Figure 6.4.

Figure 6.4: Clustering students based on different graph matrices.
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